
Navigation and Manipulation of Multiple Live Viewpoints for Vir-
tual Reality Head-mounted Displays in a Museum Setting

Master thesis in partial fulfillment of the requirements for
the degree of

Master of Science

Author: David Märzendorfer

Submitted to the Master degree program MultiMediaTechnology, Salzburg University of Ap-
plied Sciences

Advisor: FH-Prof. DI Dr. Markus Tatzgern, Bakk.

Salzburg, Austria, 01.12.2024

Affidavit

I herewith declare on oath that I wrote the present thesis without the help of third persons and
without using any other sources and means listed herein; I further declare that I observed the
guidelines for scientific work in the quotation of all unprinted sources, printed literature and
phrases and concepts taken either word for word or according to meaning from the Internet and
that I referenced all sources accordingly.

This thesis has not been submitted as an exam paper of identical or similar form, either in
Austria or abroad and corresponds to the paper graded by the assessors.

Date Signature

First Name Last Name

i

01.12.2024

David Märzendorfer

Abstract

Multiple viewpoints in virtual reality (VR) enhance users’ ability to explore and analyze envi-
ronments by enabling the placement and manipulation of viewpoints in 3D space. Museums
provide an ideal context for this technology, allowing visitors to examine fragile or distant ar-
tifacts in detail without risking damage. Multiple viewpoints can open new possibilities for
exhibit designs, such as large-scale dioramas. This study evaluates two distinct approaches
for viewpoint manipulation in a museum setting, comparing them in terms of usability, cyber-
sickness, and task performance. The first is a restricted, automated, and assisted object-centric
exploration (OCE) approach, represented by a customized HoverCam for VR. The second is
a free-movement approach using a flying camera akin to a first-person-view drone. Findings
indicate that the OCE approach is more effective for detailed object inspection, while the free
approach excels in exploring larger scenes. Based on these results, a hybrid camera system is
proposed to leverage the strengths of both methods. The sense of embodiment (SoE) in the free
approach is analyzed concerning the impact of control schemes on the sense of body ownership
(SoBO). The unique nature of multiple viewpoints in VR allows users to observe themselves
from different angles while controlling a viewpoint, often requiring frequent context switches.
While no significant correlation between control schemes and SoBO was observed during the
study, this requires further research for greater insight.

Keywords: virtual reality, viewpoints, museum, HoverCam, embodiment, drone

ii

Table of Contents

1 Introduction 1
1.1 Object-Centric Exploration . 2

1.2 Free Exploration . 2

1.3 Museum Setting . 3

1.4 Research Questions . 4

2 Related Work 4
2.1 Viewpoints . 4

2.2 Object-Centric Exploration . 5

2.3 Distant Interaction . 6

2.4 Embodiment . 7

2.5 Drones . 9

3 System Design 10
3.1 OCE Approach: HoverCam . 11

3.2 Free Drone Approach . 12

3.3 View-Panels . 13

4 Implementation 14
4.1 View-Pair . 15

4.2 View-Camera . 16

4.3 View-Panel . 17

4.4 View-Manager . 18

4.4.1 HUD Management . 19

4.4.2 View Spawning via BaseViewModeHandlers 19

4.5 Drone Implementation . 20

4.5.1 Drone Controller . 20

4.5.2 Drone View Mode-Handler . 21

4.6 HoverCam Implementation . 21

4.6.1 Excursion: Orbit-Camera . 21

4.6.2 HoverCam View Mode-Handler . 22

4.6.3 HoverCam Spawner . 23

iii

4.6.4 HoverCam Controller . 23

4.7 Avatar . 28

4.8 Point of Interest . 29

4.9 Control-Manager . 30

4.10 Study-Manager . 31

4.10.1 Tracking and Data Logging . 32

4.10.2 Point of Interest (POI) Configuration 32

4.10.3 Diorama Control . 32

4.10.4 Information Text and Audio Cues . 32

4.10.5 Study Lifecycle Management . 32

5 User Study 33

6 Results 37

7 Findings and Discussion 41
7.1 Research Questions and Hypotheses . 42

7.2 POI Search Time Distribution . 44

7.3 Participant Feedback and Possible System Improvements 44

7.3.1 HUD Feedback . 45

7.3.2 Camera Feedback and Customization Needs 45

7.3.3 View-Panel Organization and Interaction Patterns 47

7.3.4 Outline and Highlighting Features . 47

7.3.5 Button Mapping and Interaction Issues 48

7.3.6 Proposed Combined Camera System 49

8 Conclusion and Future Work 50

Appendices 62

A AI Methodology 62

B git-Repository 63

iv

List of Figures

1 The Meta Quest 2 controller’s grip button might be well suited to simulate
the grab motion usual for human hand interaction but is a less fitting Control-
Scheme for simulating a pinch motion for a crab-like avatar. 9

2 Using two buttons to represent the grab interaction of a pincer-like grab can
lead to a greater Sense of Embodiment (SoE). 9

3 The OCE approach consists of a HoverCam that can be controlled with the
joystick and buttons on both controllers. The HoverCam can be spawned and
selected, selected and moved to a new object with a ray cast. The HoverCams
position in relation to an object can be moved around the object and can also be
put closer or further away from the object. 12

4 Drones can be controlled with both controllers. The drone can be spawned
via a button press and can be selected via a ray cast. Movement of the drone is
possible via the buttons and joysticks of the controllers. The drone supports two
Control-Schemes that can be toggled between in the corresponding View-Panel
of the drone. 13

5 Every View-Camera is connected to a View-Panel. The connection is visualized
with a blue line for easier orientation. The View-Panel displays the video feed of
the View-Camera and has options to select and delete the View-Pair. For Drone-
Cameras they also have the option to change the Control-Scheme. View-Panels
can either be docked to the Head-up display (HUD) or be in World-Space. They
can be grabbed and moved freely. 14

6 The Orbit-Camera enabled the selection of predefined objects. These objects
had a fixed look-at point and the camera would orbit around them, always di-
rected towards this fixed point. The user could adjust the orbit of the camera,
but the look-at point remained static. 22

7 The Global Up-Vector Model of the Hover-Camera causes issues if the camera
approaches the ’north-pole’ of the object. The Camera tends to get stuck. . . . 25

8 The Local Up-Vector Model of the Hover-Camera does not have a problem with
the ’north-pole’ as well as the ’south-pole’ of an object, it can however lead to
an upside-down camera. 25

9 The restriction area is defined by the minimum angle between the up/down
vector of the object and the camera. The camera cannot enter the restricted area. 26

10 A vignette is displayed during the movement with the left joystick. This is done
to mitigate cybersickness. 27

11 A Control-Table was created. This table displays information and holds buttons
for changing the View-Camera mode, deleting all active cameras as well as
starting and ending the study. 31

v

12 A virtual large-scale diorama of a medieval town was built to simulate a mu-
seum environment. 33

13 Three such Point of Interests (POIs) are hidden in the diorama for the user to
find with the two presented methods of navigating and manipulating multiple
viewpoints. 34

14 The participants are asked to mark their SoE on an embodiment scale for the
Object-Centric Exploration (OCE) approach 35

15 The participants are also asked to mark their SoE on an embodiment scale for
the drone approach . 35

16 Specifically for the drone approach participants are also asked to mark their
preferred Control-Scheme on this scale . 35

17 Most of the twelve participants of the user study stated they had used Virtual
Reality (VR) once or twice already. 37

18 The task completion times of the hover and drone camera show that on average
the drone camera is faster. 38

19 The drone camera displays a higher SUS-Score than the hover camera. 38

20 The drone camera displays a lower Total Score in the Virtual Reality Sickness
Questionnaire (VRSQ). 39

21 The embodiment values for both modes are not conclusive. 40

22 The hover camera displays a greater deviation in perceived embodiment in com-
parison to the drone camera. Both modes do not display a conclusive embodiment. 40

23 The drone-centric approach is one on the Control-Scheme Spectrum and the
user-centric approach is zero. The participants of the study preferred the drone-
centric approach on average. 41

24 The participants marked their preferred Control-Schemes on a scale. Most of
them prefer the drone-centric Control-Scheme. 42

25 On average more time is spent in the user-centric scheme than in the drone-centric. 42

26 The tracked data from the user study indicates the hidden POIs were not all
equally well hidden. 45

27 The hover camera shows a blue outline around its focused object. A selected
View-Camera is also indicated with a green outline. These outlines shine through
objects. This can lead to confusion if they shine through the View-Panel, which
in turn also displays the blue outline the View-Camera sees. 48

Listings
1 A base View-Pair class, providing core structure for further specializations like

the drone and HoverCam implementations. 15

vi

2 The ViewCamera class shared by both HoverCam and drone implementations,
differing only in control mechanisms. 16

3 Implementation of a simple Singleton pattern for MonoBehaviours, allowing
scripts to be easily accessible from any part of the application. 18

4 The BaseViewModeHandler class provides a blueprint for ViewModeHandlers,
supporting flexible additions of new View-Modes. 58

5 The DroneViewPair class extends BaseViewPair with additional functionality,
including a DroneCamController. 59

6 The DroneCamController defines movement speed fields for translational and
rotational motion. 59

7 The DroneActions class manages input actions for controlling the drone’s move-
ment and orientation. 60

8 The LocomotionSystem component is located and toggled to control user move-
ment. The script searches for the component and sets its GameObject’s active
state. 61

List of Tables

1 The results of the HoverCam Mode Pilot Test indicate that the Restricted Global
Mode was ranked highest overall. 27

2 The task completion times show that the drone camera is faster. 37

3 The results of the NASA Task Load Index (NASA TLX) show the drone camera
has a better score than the hover camera. 39

Abbreviations

AR Augmented Reality

OCE Object-Centric Exploration

XR Extended Reality

VR Virtual Reality

MR Mixed Reality

POI Point of Interest

POIs Point of Interests

FOV Field of View

POV Point of View

vii

WIM World in Miniature

HUD Head-up display

UI User Interface

HCI Human-Computer Interaction

1stPP First Person Perspective

3rdPP Third Person Perspective

HMD Head-mounted Display

SoE Sense of Embodiment

SoA Sense of Agency

SoBO Sense of Body Ownership

SoSL Sense of Self-Location

VRSQ Virtual Reality Sickness Questionnaire

SUS System Usability Scale

NASA TLX NASA Task Load Index

IK Inverse Kinematics

AI Artifical Inteligence

IPQ IGroup’s Presence Questionnaire

GEQ Games Experience Questionnaire

viii

1 INTRODUCTION 1

1 Introduction

Multiple viewpoints in Extended Reality (XR) describe the process of not having just a single
perspective but multiple perspectives of an environment instead. This promises to allow for a
greater understanding and overview of an environment. For example, extra viewpoints can re-
veal POIs of an object that might not be in view otherwise and help with occlusion as described
by Elmqvist and Tsigas (2008). One application that makes use of multiple viewpoints is remote
collaboration. Additional viewpoints are used to show the perspective of remote collaborators
(Zaman, Anslow, and Rhee 2023). Most research on multiple viewpoints and perspectives is
done in VR. For example, Hoppe et al. (2022) examines perspectives in VR and the effect of
viewpoints on the users’ embodiment. They suggest a Perspective-Continuum in VR which de-
scribes that first-person perspectives lead to a greater amount of embodiment than third-person
perspectives. Users with a third-person perspective feel more like spectators than they would in
a first-person perspective. Another research on viewpoints is by Unruh, Lugrin, and Latoschik
(2024) that researches the effect of different viewpoints on the perception of time in VR.

VR lends itself to perspective and viewpoint changes since it is easy to interpolate viewpoints
and all environmental information is available. This thesis utilizes this for VR prototyping of
multiple viewpoints in a museum setting. The idea is to give visitors of a museum the option to
view an exhibit from any perspective of their choosing. A real implementation of such a use-
case in Mixed Reality (MR) could be realized with the usage of multiple depth-cameras creating
a live 3D model of an environment that can be used for viewpoint interpolation. Lindlbauer and
Wilson (2018) have already experimented with such a setup for live 3D models using static
kinect cameras and the RoomAliveToolkit1. Another approach comes from Zhang et al. (2021)
using drones. To narrow down the scope however, this thesis only focuses on a VR prototype
with the goal of gaining knowledge on how to best setup and manipulate viewpoints from a
distance. This thesis does not focus on transitions between viewpoints, selection and deletion
of viewpoints. There already is much research being done on viewpoints transitions such as
Cmentowski et al. (2023) in regard to games and story telling and even transitions from VR to
Augmented Reality (AR) by Pointecker et al. (2022).

Besides research on transitions there are already approaches for the manipulation of distant
objects in VR. Some of these approaches are Voodoo dolls by Pierce, Stearns, and Pausch
(1999) which suggests the usage of virtual copies of objects that are projected closer to the user.
Or the efficient placement of distant objects in AR by Chae, Hwang, and Seo (2018) allows the
user to dynamically squeeze their surrounding space in order to reach further. Another approach
are go-go hands by (Poupyrev et al. 1996) that allow the user to shoot out their hands and reach
further in order to interact with objects. Furthermore, there exists a proxy based approach for
interaction and manipulation of distant objects by Pohl et al. (2021).

However, not every method is applicable for viewpoint manipulation since viewpoints are not
the same as normal objects. For example the scale of a viewpoint does not have an effect on a
viewpoint. Position and rotation do however. Note here, that one could link a viewpoints scale
to its Field of View (FOV), albeit this thesis does not do so.

1. https://github.com/microsoft/RoomAliveToolkit

1 INTRODUCTION 2

In order to gain further insight on how to best manipulate viewpoints in a museum setting two
approaches of manipulation are reviewed in more detail.

1.1 Object-Centric Exploration

The first approach is one of OCE which focuses on an object in its center. This approach
is based on the work of Tatzgern et al. (2015). The object in question here is an exhibit in
a museum. With this approach the user selects an exhibit and is able to create a HoverCam
(Khan et al. 2005) camera facing the object. Whilst not going into detail on the selection of
different viewpoints, part of this approach is however the selection of the object the HoverCam
centers on. This simply done via a ray cast, in addition the HoverCam can quickly be focused
on another object with an additional ray cast, similar to the ’look-and-fly’ feature described by
McCrae et al. (2009). Overall this system focuses on a more automated and restricted approach.

1.2 Free Exploration

This approach tries to give the user more freedom in choosing and placing the viewpoint camera.
For this a mental model of drones as viewpoints is suggested. This is not meant to suggest the
usage of drones in a museum. The mental model of drones is merely meant as a way to seed
the correct conceptual model to the user. As explained by Norman (2002) mental models help
the user understand a system. People form mental models through experience, training and
instruction. Good designed solutions make sure that users have the correct mental model since
misalignment on how users think a system works and how the system works in reality can
lead to terrible usability. For this reason the drone analogy was chosen, since the viewpoints
behave like remote controlled drones with a camera on them. The user can select a drone and
navigate it to a different position and rotation. To maximize the potential of this approach it
features two Control-Schemes which are examined in more detail in regard to their effect on
SoE and Sense of Body Ownership (SoBO) as well. Kilteni, Groten, and Slater (2012) describe
embodiment to partly consist out of SoBO. SoBO is described as one’s self-attribution of a
body (Gallagher 2000). Kilteni, Groten, and Slater (2012) furthermore state that SoBO can
be enhanced by: ”increasing the sensory correlations between the physical stimulation of the
biological body and the seen stimulation on the avatar’s body.” Therefore even just a change
in Control-Schemes could lead to greater SoBO since it might change this correlation between
physical stimulation and observed stimulation of the avatar.

These two methods are compared in a user study because they represent two distinct approaches.
One method is restricted, automated and assisted, making movement easier but potentially lim-
iting the user’s freedom to view objects from certain angles. The other method offers complete
freedom, giving users full control to look at whatever they want, but it may be slower and more
demanding since the user has to make all adjustments manually. In addition, the drone ap-
proach, with its complete freedom, is examined in regard to the influence of Control-Schemes
on the SoE and SoBO.

1 INTRODUCTION 3

1.3 Museum Setting

The museum setting was intentionally chosen for this research, as it provides an environment
characterized by differently sized objects arranged within a confined space. Such a setting
inherently imposes certain physical limitations on user movement, making it an ideal scenario
for exploring the potential of multiple viewpoints. Moreover, museums naturally cater to user
curiosity, as visitors often wish to view exhibits from a variety of angles and perspectives.
This makes them an excellent testing ground for viewpoint manipulation. Beyond this primary
use, viewpoint manipulation in museums could also be applied to enhance guided tours. For
example, a tour guide might use this functionality to showcase a specific Point of View (POV) of
an exhibit to visitors, akin to how viewpoints are leveraged in remote collaboration, as discussed
by Zaman, Anslow, and Rhee (2023).

Museum objects, also known as musealia, come in a wide range of shapes, sizes and dimensions,
each presenting unique challenges for effective display. Museums must carefully consider how
to position and present these objects to maximize the educational or aesthetic impact of their ex-
hibits. Allowing guests the freedom to choose their own viewpoints could revolutionize the way
objects are displayed, offering a more interactive and personalized experience. For additional
insights into museum objects and exhibit design see Desvallées and Mairesse (2010).

Delgado et al. (2024) investigate the potential of VR in museums to create new opportunities
for interactive and immersive experiences. They developed an interactive VR game for the
Florida Natural History Museum, leveraging the museum’s extensive 3D digital collection. In
this game, visitors can swim alongside endangered underwater species in a simulated ocean
environment, with the musealia presented in appropriate ecological contexts. Visitors also re-
ceive scientific insights about these creatures through a conversational Artifical Inteligence (AI)
agent. Their research emphasizes the importance of making such experiences shared among vis-
itors. For instance, they suggest displaying the VR experience on a TV screen to allow others
to observe and promote social interaction.

It is crucial to distinguish that this paper focuses on the application of VR in museum settings to
create interactive experiences. In contrast, this thesis explores the manipulation of viewpoints
in AR for museums by prototyping in VR. However, the insight from Delgado et al. (2024)
regarding the importance of shared experiences is applicable to both contexts.

Other research on VR in museums includes the work by Cao et al. (2023), who explore virtual
museums and the potential of interactive exhibitions in VRChat guided by expert insight. Their
approach takes place entirely in VR, independent of any physical museum premises.

While this thesis focuses on a museum context, the findings are by no means restricted to this
domain. Consider, for instance, the VR game Another Fisherman’s Tale2, which incorporates
innovative interactions with distant objects and out-of-body viewpoints. The gaming industry
stands to benefit significantly from research into viewpoint manipulation, as these techniques
can enrich user interaction and immersion in virtual environments. This overlap underscores
the broad applicability of the insights gained through this work.

2. https://store.steampowered.com/app/2096570

https://store.steampowered.com/app/2096570

2 RELATED WORK 4

1.4 Research Questions

The following main research question and two sub-research questions are addressed in this
paper:

RQ1 What method is more effective in placing and manipulating viewpoints: an OCE based
automatic and restricted approach or a free drone-inspired approach?

sRQ1 Which approach leads to greater cybersickness?

sRQ2 Which approach leads to better exploration of a virtual scene?

Besides these research questions comparing the two approaches, a third and fourth sub-research
question regarding the Control-Schemes of the drone method are examined:

sRQ3 What drone Control-Scheme is preferred by users for an explorative task?

sRQ4 Can a correlation between Control-Schemes and SoE be observed?

2 Related Work

This paper delves into several key topics, including viewpoints, OCE, drones, distant interac-
tion, embodiment and avatars. Each of these elements plays a significant role in the overall
study and will be introduced through a review of related work in the following sections.

2.1 Viewpoints

Kim, Lee, and Lee (2022) examined optimal layouts for multiple viewpoint videos within a
HUD in VR. However, their study focuses solely on passive viewing of VR content, without
active user movement or interaction within the VR space. In contrast, this thesis allows users to
actively control the position and orientation of their viewpoints. Importantly, this study does not
aim to optimize the layout of the viewpoint video streams. Instead, it strikes a balance between
layout restrictions and user preference, enabling users to freely align and position viewpoint
videos. These can be placed either within a HUD or anchored in world-space.
Kusunoki et al. (2023) examined the benefit of multiple viewpoints whilst 3D drawing on ob-
jects in VR. They provided a bird’s eye viewpoint and a viewpoint from the opposite side of
the object to the user. These viewpoints where fixed and the user could change between them
but could not create new viewpoints. The extra viewpoints led to mixed results, some users
felt stressed by the viewpoints and others reported greater overview. In comparison, this thesis
allows users to define their own viewpoints and manage them in order to allow each individual
to specify the amount of views and not overwhelm them.
Prouzeau et al. (2019) examined the benefit of using visual links to show connections between
data points in visualization and their context in the world in a VR setting. This thesis utilizes

2 RELATED WORK 5

visual links by connecting viewpoint videos to their respective viewpoint camera in the hopes
of giving the user a greater overview and lessening confusion.
Shen, Mcgrenere, and Yoon (2024) explored the concept of viewpoints in relation to perspective-
taking and the enhancement of empathy. Their research focused specifically on how perspective-
taking and avatar embodiment can foster greater empathy in younger adults toward older adults.
To investigate this, they conducted a user study involving pairs of young and old adults. Both
participants were immersed in a VR environment, where the younger adult was assigned an
avatar representing a younger version of the older adult. This avatar swap leverages the Proteus
Effect (Praetorius and Görlich 2020), which describes how individuals’ behavior can be influ-
enced by the characteristics of their avatars. Within the study, the older adult shared a story from
their youth, with the aim of fostering empathy and understanding through this interaction. The
overarching goal of the research was to enhance intergenerational communication, with the ex-
pectation that such efforts would lead to increased mutual understanding and empathy between
the participants. While Shen, Mcgrenere, and Yoon (2024) do not directly address the specific
topic of multiple viewpoints as explored in this thesis, it is included here as a noteworthy ex-
ample of how viewpoints can be applied within VR contexts. Beyond their utility in providing
better spatial or situational awareness, viewpoints can also serve as a tool for perspective-taking.
By allowing users to adopt the perspective of another character, such approaches can signifi-
cantly enhance empathy toward that character and deepen the emotional connection between
participants.

2.2 Object-Centric Exploration

Tatzgern et al. (2015) employed an OCE approach in AR to view real-world objects and loca-
tions in a city using an orbital camera on mobile devices. This study applies a similar automated
and restricted OCE approach but compares it to a more freeform drone-based method in VR.
Instead of an orbital camera, a HoverCam is utilized, which is based on UniCams (Zeleznik and
Forsberg 1999), a system allowing camera control in 3D environments through 2D gestures.
Although there are more advanced versions like ShellCam (Boubekeur 2014) and SHOCam
(Ortega, Stuerzlinger, and Scheurich 2015), this study uses the basic HoverCam for its simplic-
ity and sufficiency in representing an automated OCE approach. To enhance scene exploration,
the ’look-and-fly’ technique introduced by McCrae et al. (2009) is incorporated, enabling quick
selection of objects to look at via ray casting. Another difference to Tatzgern et al. (2015) is that
they only show a copy of the object that is being inspected. This thesis’ viewpoints however
show the real VR objects. Furthermore, this thesis utilizes OCE in VR with a Head-mounted
Display (HMD) and not in AR with a mobile device.

Khan et al. (2005) define a HoverCam as a camera that maintains a fixed distance from an object
while targeting a specific point on the object’s surface. This target point can be moved with a
two-dimensional input. A mouse was used in their study, while this thesis employs joystick
input. As the target point shifts, the HoverCam follows, preserving its distance from the object
and enabling detailed inspection of any surface point.

The original paper also introduced a field of influence around the object, where a traditional

2 RELATED WORK 6

camera, upon entering this field, is drawn towards the object and behaves like a HoverCam.
However, this influence field was not implemented in this thesis. Instead, the ’look-and-fly’
feature (McCrae et al. 2009) enables users to select objects and have the camera immediately
move to them. Additionally, Khan et al. (2005) proposed four distinct modes for defining the
camera’s Up-Vector, crucial for camera orientation and control. This thesis incorporates two of
these modes and introduces three custom Up-Vector modes, detailed further in Section 4.6.4.

The selection of the ’look-and-fly’ feature is done via ray casts. Jankowski and Hachet (2013)
list ray casts as the most common way for object selection. Since it is the most well known
technique it is also used in this thesis. An extension of this selection feature could also include
gaze-based selection. Narkar et al. (2024) have tested gaze-based selection in combination with
machine learning models to increase its effectiveness. This thesis does not focus on object
selection in virtual environment and therefore only utilizes simple ray casting. However, the
inclusion of additional gaze-based input could lead to better usability in future iterations.

2.3 Distant Interaction

Museums are often comprised of a diverse collection of exhibits and displays of differing shapes
and sizes. These exhibit pieces, referred to as musealia, often require careful preservation and,
as a result, cannot be directly handled or closely approached by visitors. This thesis aims
to enable new methods for displaying these musealia by employing multiple viewpoints. For
instance, consider a large-scale diorama display, which would ordinarily pose significant chal-
lenges for viewing due to its physical size and the potential occlusion caused by the objects in
the diorama itself. By utilizing multiple viewpoints, it becomes possible to offer an in-depth ex-
ploration of such large dioramas, providing users with a more immersive experience than might
be achieved with smaller, more limited dioramas.

With larger dioramas, the issue arises of enabling user interaction with objects that are phys-
ically located at a distance or otherwise inaccessible due to protective barriers. Therefore, an
effective distant interaction method is essential to allow users to meaningfully engage with
these viewpoints without compromising the integrity of the objects themselves. It is important
to clarify, however, that this thesis primarily addresses the interaction with viewpoints and their
dynamic manipulation rather than direct interaction with the musealia themselves. Essentially,
users interact with virtual representations or ’virtual cameras’ that offer remote perspectives of
these objects, granting them the sensation of proximity and interaction without requiring phys-
ical access to the exhibits.
Pohl et al. (2021) introduces a system for creating spherical proxies, which serve a dual purpose
by acting as both portals and viewpoints, allowing users to manipulate objects from a distance.
These proxies enable spatial remapping and permit users to view and interact with distant ob-
jects within a virtual environment. While the poro system itself is not directly implemented in
this thesis, it represents an innovative approach to remote interaction and is worth examining as
a point of comparison. Specifically, the poro system exemplifies a unique integration of viewing
and interaction within a single framework, an approach which is distinct from the one explored
in this study.

2 RELATED WORK 7

In a museum setting, however, where direct interaction with objects is generally restricted, it be-
comes essential to limit the user’s control to viewpoint adjustments alone. Although interaction
features could potentially be disabled in the poro system to suit this type of environment, this
thesis instead aims to explore and contrast a restricted method of viewpoint manipulation with a
more unrestricted, flexible approach. The poro system allows a freely placeable spherical proxy,
granting users freedom within a contained area to interact with the object it surrounds. As such,
it remains challenging to strictly classify the poro system as either restrictive or freeform, given
its combination of constrained spatial boundaries with substantial user flexibility.

2.4 Embodiment

Users can control a viewpoint where they can possibly see themselves controlling said view-
point. This raises some interesting questions regarding embodiment. This is examined in more
detail regarding Control-Schemes and embodiment. See sRQ3 and sRQ4. In order to do so, a
definition for embodiment is needed. multiple meanings for the term embodiment exist. Car-
rying on in this thesis, the term SoE is used. Kilteni, Groten, and Slater (2012) define SoE
as: ”SoE toward a body B is the sense that emerges when B’s properties are processed as if
they were the properties of one’s own biological body.” Furthermore Kilteni, Groten, and Slater
(2012) describe SoE to consist of three sub-terms:

1. Sense of Self-Location (SoSL): The sense of self-location refers to one’s spatial experi-
ence of being inside a body and it does not refer to the spatial experience of being inside
a world.

2. Sense of Agency (SoA): The sense of agency refers to the sense of having global motor
control, including the subjective experience of action, control intention, motor selection
and the conscious experience of will.

3. Sense of Body Ownership (SoBO): The sense of body ownership refers to one’s self-
attribution to a body.

Hoppe et al. (2022) investigated the effects of First Person Perspective (1stPP) and Third Person
Perspective (3rdPP) in VR on user embodiment. Their study found evidence for a Perspective
Continuum, where users in 3rdPP felt more like spectators, while those in 1stPP identified
more as the main character. Participants experienced different perspectives and completed em-
bodiment (Gorisse et al. 2017) and presence (Schubert, Friedmann, and Regenbrecht 2001)
questionnaires after defending against attacking skeletons for three minutes. However, it is im-
portant to note that participants were not allowed to actively change their perspectives during
the study. In this thesis, users are in full control of the viewpoint and can change their perspec-
tives dynamically.
In comparison, Otono et al. (2023) explored the SoE in AR, where physical activity is directly
linked to visual representation. Participants could flex their muscles to transition their avatars
into more muscular versions in 3rdPP. While this study focused on avatar transformation rather

2 RELATED WORK 8

than perspective change, it provides insight into how physical interaction can influence embod-
iment. Similarly this thesis provides some insight on how Control-Schemes might influence
embodiment.

Avatars in VR
Avatars are embodied virtual representations of users in VR (Dufresne et al. 2024). They can
vary in degrees of realism, ranging from full-body representations to partial depictions, such as
head, torso and arms. The realism of an avatar can negatively impact interaction when it does
not align with user expectations (Herrera, Oh, and Bailenson 2018).
Additionally, avatars significantly influence SoBO, which in turn affects SoE (Kilteni, Groten,
and Slater 2012). For this reason, an avatar with head and arm tracking, as well as inverse-
kinematic walking animations, was implemented for this thesis. Users are able to view them-
selves from a third-person perspective, where a realistic avatar enhances the SoSL.
Dufresne et al. (2024) also argue that avatars suggest affordances, including possible ”false
affordances.” Norman (2002) introduced the concept of affordances to the Human-Computer
Interaction (HCI) community, defining them as: ”... the term affordance refers to the perceived
and actual properties of the thing, primarily those fundamental properties that determine just
how the thing could possibly be used.” Thus, an avatar with realistic hands suggests to the user
that they can interact with objects using their hands. A ”false affordance” occurs when this is
not the case—for example, if the hands are incapable of grabbing objects. This discrepancy
would result in poor usability, creating an incongruence with user expectations (Latoschik and
Wienrich 2022). Although the inverse-kinematic legs of the avatar in this thesis may suggest
”false affordances” - since users cannot, for instance, stomp with their feet - these features were
nevertheless implemented to enhance the SoBO.

Fribourg et al. (2020) look into the influence of appearance, control and POV on the SoE of
avatars in VR. They observed that control and POV are more important to users than the ap-
pearance of an avatar. With control they mean what the avatar is able to perform, which in turn
contributes to the SoA, which has influence on the SoE (Kilteni, Groten, and Slater 2012). This
however focuses on the control (SoA) of an avatar and not the Control-Scheme (SoBO). As an
illustrative example of the potential impact of Control-Schemes on the SoBO, consider a VR
game where players control a crab-like creature capable of grasping objects with its pincers.
Typically, the Meta 2 controller employs the grip button located on the side of the device for
object interaction (see Figure 1). However, an alternative Control-Scheme requiring the use of
both the trigger and face buttons could more closely mimic a crab’s natural pinching motion (see
Figure 2). This control method, by more accurately reflecting the mechanics of a crab’s pin-
cers, may enhance the SoBO by aligning the user’s physical actions with the virtual creature’s
movements.

Inoue and Kitazaki (2021) investigate the role of virtual mirrors in enhancing the SoE towards
a VR avatar. Their paper elaborates on the psychological basis of virtual mirrors. When users
view their avatar reflected in a virtual mirror, it leads to a stronger SoBO. The virtual mirror
allows users to observe their avatar’s movements in real time, reinforcing the synchronization
between their own physical actions and the avatar’s corresponding motions.
Although virtual mirrors are not employed in this thesis, the additional viewpoints have a similar

2 RELATED WORK 9

effect. By utilizing these viewpoints, users can observe their avatar from an external perspec-
tive, witnessing the avatar’s movements align seamlessly with their own. This capability not
only strengthens the connection between the user and their avatar but also enhances the overall
immersive experience by providing visual confirmation of the avatar’s responsiveness.

Figure 1: The Meta Quest 2 controller’s grip button might be well suited to simulate the grab
motion usual for human hand interaction but is a less fitting Control-Scheme for simulating a
pinch motion for a crab-like avatar.

Figure 2: Using two buttons to represent the grab interaction of a pincer-like grab can lead to a
greater SoE.

2.5 Drones

Erat et al. (2018) used drones in AR with an exocentric viewpoint to explore hidden areas,
allowing users to select a destination for the drone to automatically fly to. However, this the-
sis opts for a more manual approach. Users are not able to just select a target point for the
drone but need to steer it there themselves. Inoue et al. (2023) employed an automatic follower
drone to provide a 3rdPP view of a manually controlled main drone, enhancing the user’s un-
derstanding of the drone’s height, heading and surroundings. Although their study only utilized

3 SYSTEM DESIGN 10

drone-centric controls—where the forward direction on the controller aligns with the drone’s
forward direction—this thesis considers the potential advantages of user-centric controls, where
the controller’s forward direction matches the user’s orientation. Given the exploratory nature
of this thesis and the close proximity of the user to the drone, user-centric coordinates may be
more appropriate. Users are therefore allowed to choose their preferred Control-Scheme during
the study.
Despite the prevalence of drone-centric controls in practical applications - likely due to the lack
of information about the drone’s position relative to the user, making user-centric controls im-
practical - this thesis allows participants to choose their preferred control mode. The findings
will provide insights into whether user-centric or drone-centric controls are more effective in a
VR setting. In addition, it is hypothesized that the preferred controls depend on the focus of the
participants. If participants focus on the View-Panel whilst flying the drone, they might prefer
drone-centric controls and user-centric controls when they are not. In alignment with Kilteni,
Groten, and Slater (2012), when users want to embody the drone more they will also prefer the
drone-centric Control-Scheme since it leads to better SoBO. Additionally, this might hint at,
that the user’s desired body ownership can quickly change by just focusing on the View-Panel
and controlling a drone.
Ryu, Park, and Kim (2023) examine first-person view drone flights and investigate methods
to mitigate the cybersickness often experienced by operators. Their approach involves using a
deep neural network to integrate reverse optical flow on static landmarks into the drone-captured
footage. This technique has demonstrated promising results in reducing cybersickness for first-
person view drone operators. In contrast, this thesis adopts a different strategy and does not
utilize a true first-person perspective for the drone camera. Instead, the drone’s first-person
view footage is displayed on panels situated within the virtual environment, or world-space,
rather than occupying the user’s entire FOV. This design choice serves two primary purposes:
it simplifies the process of viewing multiple viewpoints simultaneously and helps reduce the cy-
bersickness that can arise from displaying drone footage across the full FOV. By enabling the
user to control the drone from a ground-level perspective, augmented with a smaller panel dis-
playing the drone’s first-person view, the visual motion mismatch between the user’s stationary
body and the drone’s rapid movement is minimized. Reducing this sensory conflict directly ad-
dresses one of the primary causes of visually induced motion sickness, as outlined by Hettinger
and Riccio (1992) and contributes to a more comfortable and manageable user experience.

3 System Design

For the user study scenario, participants are required to find and view three hidden objects
within a life-size diorama. To accomplish this task, they must utilize the implemented system,
which comprises two distinct methods for placing and manipulating viewpoints: an automated
and restricted approach using the OCE HoverCam (Khan et al. 2005) and a free drone mode
that provides complete control over the viewpoint’s position and orientation.

Using these methods, a virtual camera can be positioned, with its viewpoint projected onto a
Render-Texture displayed in a View-Panel. A View-Camera and a View-Panel together form a

3 SYSTEM DESIGN 11

pair, referred to as a View-Pair.

As previously mentioned, the system facilitates the placement and manipulation of viewpoints
to locate hidden objects. The following are the key requirements for the system, with the stipu-
lation that users need to view up to three hidden objects simultaneously:

1. Spawning a View-Pair: To view objects from specific perspectives, the system must
enable users to spawn a View-Pair. To prevent confusion when multiple viewpoints are
active, a hard limit of five View-Pairs at a time is imposed. Whenever a View-Pair is
spawned a View-Camera and its corresponding View-Panel are instantiated.

2. Moving a View-Camera: To locate the hidden objects, users must have the ability to
move the View-Camera to various points in space.

3. Deleting a View-Pair: To encourage free exploration, users need the capability to delete
viewpoints when necessary, in addition to creating and placing them. When a View-Pair
is deleted its View-Camera and View-Panel are destroyed.

4. Viewing the View-Camera: The system must provide a means for users to view what a
View-Camera sees. Both approaches share a common solution for this: a View-Panel. The
View-Panel displays the Render-Texture of its associated View-Camera. Since this thesis
does not focus on optimizing the layout for multiple viewpoint streams, the arrangement
of these streams is left to the user, as discussed in Section 2.1. Users can move View-
Panels freely, positioning them within the HUD or placing them in world space.

5. Selecting and Unselecting a View-Camera: Given that up to five View-Cameras are
supported and only one should be manipulated at any given time, a feature for selecting
and unselecting View-Cameras is essential. This thesis emphasizes viewpoint manipula-
tion rather than selection, which is relatively straightforward and consistent across both
methods. A View-Camera can be selected and unselected via a button in its corresponding
View-Panel.

3.1 OCE Approach: HoverCam

The HoverCam (Khan et al. 2005) is defined as a camera that always looks at a specific ob-
ject while maintaining a fixed distance from it. The camera can be moved along the surface
of the object using a 2D input, but its distance from the object remains constant. This method
was selected as an automated and restricted way to control viewpoints in an OCE setting. It
is restricted because it centers on a single object (OCE) and is automated because, while the
camera’s position can be adjusted, its orientation is always directed toward the object.
A HoverCam can be spawned by selecting an object with a ray cast from the right-hand con-
troller and pressing the ’A’ button. This action spawns a new HoverCam, provided no other
HoverCam is currently selected. If a HoverCam is already selected, pressing ’A’ changes the
object being inspected. A selected HoverCam is indicated by a green border around its model.
The current object that is being inspected, is also highlighted with a blue border. The selected

3 SYSTEM DESIGN 12

HoverCam can be moved around its object using the right joystick. HoverCams can be dese-
lected either by pressing the ’B’ button or by using a button on its corresponding View-Panel.
The HoverCam can be moved closer or further away with the ’X’ and ’Y’ buttons. See Figure
3 for a visual guide to the controls.

Figure 3: The OCE approach consists of a HoverCam that can be controlled with the joystick
and buttons on both controllers. The HoverCam can be spawned and selected, selected and
moved to a new object with a ray cast. The HoverCams position in relation to an object can be
moved around the object and can also be put closer or further away from the object.

To summarize how the system fulfills the requirements: the HoverCam can be spawned via a
ray cast and button press. It can be moved via a joystick whilst focused on an object and can
be moved from object to object via a ray cast and a button press. The deletion, selection and
viewing can be done in the View-Panel.

3.2 Free Drone Approach

In contrast, the free drones are not restricted in their orientation or position and can be placed
wherever the user desires. The drones support two methods of movement: drone-centric and
user-centric. The difference lies in how the drone’s forward direction is determined. In drone-
centric mode, forward is defined by the direction the drone faces, whereas in user-centric mode,
forward is based on the direction the user faces.
The controls for the drone are the following: a drone can be spawned via the ’A’ button. A
selected drone can be maneuvered with the ’X’ and ’Y’ buttons to move up and down and the

3 SYSTEM DESIGN 13

right joystick to move forward/backward/left/right. A drone can be selected by grabbing the
camera’s model or via its View-Panel. Drones can be deselected with the ’B’ button or the
View-Panel. The selection status of a drone is also displayed via a green border around the
cameras model. For a visual explanation of the controls see Figure 4.

To summarize how the system fulfills the requirements: The drone can be spawned with a

Figure 4: Drones can be controlled with both controllers. The drone can be spawned via a
button press and can be selected via a ray cast. Movement of the drone is possible via the
buttons and joysticks of the controllers. The drone supports two Control-Schemes that can be
toggled between in the corresponding View-Panel of the drone.

button press and it can be moved with both joysticks and the face buttons of the left controller.
Similar to the HoverCam the deletion, selection and viewing are handled by the View-Panel. In
addition, the drone can also be selected by grabbing the drone itself.

3.3 View-Panels

Each camera is connected to a View-Panel that displays the camera’s view. See Figure 5 for
reference. View-Panels can be grabbed with either the controller by its title or the handle on the
bottom and can be placed anywhere in world space. As already mentioned in the related work,
this is done to allow users to customize the location of the viewpoint stream themselves. While
the View-Panel does not move, it always rotates to face the user. When grabbing the View-Panel,
the trigger button on the controller can be used to dock it into the HUD. Docked View-Panels
have a gray background instead of a black one. Similarly, they can be undocked again. Every

4 IMPLEMENTATION 14

View-Panel also includes a blue line curve that is linked to its corresponding camera for easier
orientation. Prouzeau et al. (2019) has demonstrated the benefits of such visual links.

Figure 5: Every View-Camera is connected to a View-Panel. The connection is visualized with
a blue line for easier orientation. The View-Panel displays the video feed of the View-Camera
and has options to select and delete the View-Pair. For Drone-Cameras they also have the option
to change the Control-Scheme. View-Panels can either be docked to the HUD or be in World-
Space. They can be grabbed and moved freely.

Each View-Panel also features buttons for the deletion and selection of the view-pair. The blue
’Control Mode’ button is only available for the free drone camera. With this button, the drone’s
control scheme can be toggled between a user-centric and a drone-centric version.

4 Implementation

The whole project was built in Unity (version 2022.3.9f1) and can be found at https://gitlab.
mediacube.at/fhs44512/mmt-masterarbeit-david-maerzendorfer. For the implementation of VR,
the XR Interaction Toolkit (version 2.5.0) was used. The XR Interaction Toolkit is provided by
Unity and allows the creation of VR and AR experiences. It is hardware-independent and al-
ready provides useful systems for interactions and locomotion. The XR Interaction Toolkit can
be easily extended if the provided components do not suffice for one’s needs.

The study was developed for the Meta Quest 2. For the creation of the diorama synty 3 asset
packages have been used.

In the following, the created systems for the study will be described and explained in more
detail.

3. https://syntystore.com/collections/polygon-series

https://gitlab.mediacube.at/fhs44512/mmt-masterarbeit-david-maerzendorfer
https://gitlab.mediacube.at/fhs44512/mmt-masterarbeit-david-maerzendorfer

4 IMPLEMENTATION 15

4.1 View-Pair

A View-Pair is a foundational component in this system, combining a View-Camera and a View-
Panel to facilitate a linked display setup. Conceptually, the View-Pair acts as an intermediary
that synchronizes camera output with the display panel, ensuring consistent and accurate visual
rendering. This is implemented in code as an abstract base class called BaseViewPair, which
establishes essential methods and properties to manage the lifecycle and interactions between
the view components. For reference, see Listing 1.

1 public abstract class BaseViewPair: MonoBehaviour
2 {
3 public ViewCamera viewCam;
4 public BaseViewPanel basePanel;
5
6 public UnityEvent onViewPairDeleted = new UnityEvent();
7
8 public virtual void Awake()
9 {

10 // Setup render texture for the camera and set in panel
11 viewCam.CreateRenderTexture();
12 basePanel.SetRenderTexture(viewCam.renderTexture);
13 basePanel.myViewPair = this;
14 }
15
16 public abstract void ReceiveSelect();
17
18 public virtual void DeleteViewPair()
19 {
20 onViewPairDeleted.Invoke();
21 Destroy(basePanel.gameObject);
22 Destroy(viewCam.gameObject);
23 Destroy(this.gameObject);
24 }
25 }

Listing 1: A base View-Pair class, providing core structure for further specializations like the
drone and HoverCam implementations.

The ViewCamera component consistently outputs its view to a RenderTexture, which
is subsequently displayed by the View-Panel. The View-Pair class automates the initialization
of this RenderTexture and assigns it to the View-Panel, establishing a self-contained view
module where the camera’s rendering is directly presented on the panel interface.

In this design, BaseViewPair serves as an abstract superclass, setting up key functionalities
that are extended by specific implementations, such as the drone and HoverCam View-Pairs
(detailed in Chapters 4.5 and 4.6). Through inheritance, these implementations can add unique
functionalities while relying on the core framework provided by BaseViewPair.

Overall, the View-Pair structure facilitates the linkage between the View-Camera and View-
Panel components, providing each component with a straightforward means to locate and in-

4 IMPLEMENTATION 16

teract with its paired counterpart. This approach not only enhances modularity but also ensures
that changes in one component are reflected in the other, streamlining updates and interactions
within the view system.

4.2 View-Camera

The ViewCamera script represents a modular viewpoint component within the system, serving
as the foundational camera class. While both the HoverCam and drone implementations ul-
timately derive from this ViewCamera, they are distinguished primarily by their respective
control mechanisms, which vary to suit their individual functional requirements.

1 public class ViewCamera : MonoBehaviour
2 {
3 public Camera cam;
4
5 public int textureWidth = 1024;
6 public int textureHeight = 1024;
7
8 [HideInInspector]
9 public RenderTexture renderTexture;

10
11
12 public void CreateRenderTexture()
13 {
14 renderTexture = new RenderTexture(textureWidth, textureHeight,

24);
15 renderTexture.enableRandomWrite = true;
16 renderTexture.Create();
17
18 cam.targetTexture = renderTexture;
19 }
20
21 private void OnDestroy()
22 {
23 if (renderTexture != null)
24 {
25 renderTexture.Release();
26 renderTexture = null;
27 }
28 }
29 }

Listing 2: The ViewCamera class shared by both HoverCam and drone implementations,
differing only in control mechanisms.

As shown in Listing 2, the View-Camera class extends the standard Unity Camera functionality
by rendering its output directly into a RenderTexture. This RenderTexture allows the
View-Camera’s viewpoint to be displayed on a texture, which can be linked to various display

4 IMPLEMENTATION 17

elements. The resolution for this study has been set to 1024x1024 pixels, balancing visual
clarity with performance efficiency.

The CreateRenderTexture method within ViewCamera configures a new Render-
Texture with the specified dimensions, ensuring that the camera’s output is consistently cap-
tured. This RenderTexture is initialized by the View-Pair, which manages the setup process
for both the camera and the panel display. When the ViewCamera instance is destroyed, it
ensures resource efficiency by releasing its RenderTexture, thus freeing memory and pre-
venting potential memory leaks.

In this architecture, the ViewCamera acts as a flexible, reusable camera component adaptable
for different control schemas while maintaining a standardized texture output. The encapsu-
lation of rendering logic within ViewCamera promotes modularity, allowing distinct imple-
mentations to leverage this shared camera infrastructure with minimal redundancy.

4.3 View-Panel

The View-Panel framework is comprised of two main classes: BaseViewPanel and DroneView-
Panel. The DroneViewPanel class extends BaseViewPanel by introducing an addi-
tional control mode button specifically designed for the drone, enhancing interactivity and al-
lowing users to toggle the drone’s control mode directly from the panel interface.

The BaseViewPanel contains the core interaction logic and is designed to be highly modular.
A critical requirement is that BaseViewPanel must be attached to a GameObject that also
includes the XRGrabInteractable component, part of the XR Interaction Toolkit provided
by Unity. This toolkit facilitates interaction within XR environments, enabling users to grab and
manipulate objects in a 3D space. For detailed guidance on the XR Interaction Toolkit, please
refer to its official documentation.

The XRGrabInteractable component plays a central role in managing the docking func-
tionality of the View-Panel within the HUD. By listening to events provided by XRGrabIn-
teractable, BaseViewPanel is able to detect when it is docked to or removed from
the HUD. Although BaseViewPanel registers its state in relation to the HUD, the actual
docking mechanics, such as positioning and alignment, are managed externally by the View-
Manager. This separation of responsibilities allows for a clean, modular approach where the
ViewManager can centralize positioning logic across multiple View-Panels.

Interaction within the View-Panel is further facilitated by standard User Interface (UI) buttons.
Each button is connected to methods within BaseViewPanel, which act as intermediaries to
execute specific actions, such as selecting options or modes. These methods delegate functional
tasks to the relevant View-Pair, allowing the View-Panel to communicate seamlessly with its
linked components.

The design of BaseViewPanel as a customizable interface allows for diverse interaction
capabilities tailored to specific components, like the drone, while retaining a consistent base
functionality. This modularity enables the system to expand flexibly, allowing future integra-
tions of additional control elements or interactive features.

4 IMPLEMENTATION 18

4.4 View-Manager

The ViewManager serves as the core class responsible for orchestrating the instantiation of
ViewCamera instances and managing the docking of BaseViewPanel objects within the
HUD. This central component ensures seamless interaction between the view elements, allow-
ing for a streamlined experience in setting up and interacting with camera panels.

1 public class SingletonMonoBehaviour<T> : MonoBehaviour where T :
MonoBehaviour

2 {
3 public static T Instance { get; private set; }
4
5 public virtual void Awake()
6 {
7 if (Instance != null && Instance != this)
8 {
9 Destroy(this.gameObject);

10 return;
11 }
12 else
13 {
14 Instance = this.GetComponent<T>();
15 }
16 }
17 }

Listing 3: Implementation of a simple Singleton pattern for MonoBehaviours, allowing scripts
to be easily accessible from any part of the application.

The ViewManager class is implemented as a SingletonMonoBehaviour, as shown in
Listing 3. By applying the Singleton pattern, ViewManager becomes globally accessible,
allowing other classes to interact with it without needing to pass references. Although the Sin-
gleton pattern is sometimes labeled as an ”anti-pattern” due to its potential to create hidden de-
pendencies and reduce flexibility, in this case, it was chosen to simplify access to such a central
script, where only one instance should manage the View-Camera and View-Panel interactions.

The Singleton pattern is implemented through the SingletonMonoBehaviour generic
class, which enforces a single instance of the View-Manager while preventing duplication. Dur-
ing initialization, SingletonMonoBehaviour checks for existing instances and destroys
any duplicates, ensuring only one active instance persists. This pattern facilitates the View-
Manager’s ability to perform critical tasks across multiple scenes or components without the
need for redundant instantiation or complex referencing structures.

Thus, the ViewManager efficiently centralizes control over view creation and docking pro-
cesses, enabling a cohesive and manageable structure for view handling across the application.

4 IMPLEMENTATION 19

4.4.1 HUD Management

Each BaseViewPanel notifies the ViewManager when it requests to be transferred to the
HUD. The ViewManager then carries out the necessary actions to achieve this transition.
In this implementation, the HUD functions as a simulated or ”fake” HUD, where View-Panels
are not moved to screen-space but instead remain in world-space, attached to the user’s head
movement. This approach provides an immersive, semi-static interface without the need for
complex screen-space transformations.

One limitation of this approach, however, is that keeping the View-Panels in world-space intro-
duces minor positional discrepancies when following head movement. Nonetheless, as HUD
interaction is not a central focus of this study, a simplified solution was adopted for efficiency.

To incorporate a BaseViewPanel into the HUD, the ViewManager reassigns the panel’s
parent to the HMDGameObject, which tracks the user’s head movements. This parenting method
allows the BaseViewPanel to maintain a relative position within the user’s field of view, sim-
ulating an attached HUD experience. Additionally, the ViewManager adjusts the background
color of the View-Panel to provide a visual indicator of its docked status, making it more dis-
tinguishable from non-docked panels.

This approach to HUD management is a practical compromise, providing a functional solution
to HUD emulation in world-space while maintaining focus on the study’s primary objectives.

4.4.2 View Spawning via BaseViewModeHandlers

The ViewManager employs a ViewMode enum to indicate the active mode, either Hov-
erCam or drone mode. For each mode, a designated ViewModeHandler is maintained to
handle the instantiation of View-Pairs. By delegating View-Pair spawning to specific handlers,
the code within ViewManager is modularized, enhancing readability and simplifying future
expansions with additional View-Modes.

At the core of this architecture is the BaseViewModeHandler abstract class, which estab-
lishes a blueprint for all ViewModeHandlers. This design facilitates standardized imple-
mentations of new view modes, allowing for flexible extension without extensive refactoring of
the View-Manager. Listing 4 illustrates the structure of BaseViewModeHandler.

The BaseViewModeHandler provides core functionalities for managing View-Pairs. It in-
cludes methods for deleting all active View-Pairs and tracking the number of currently active
views, as well as abstract methods SpawnViewPair and Activate which must be imple-
mented by derived classes. The Deactivate method is partially implemented in Base-
ViewModeHandler to allow deletion of all View-Pairs; however, it can be overridden in
specific handlers if additional deactivation logic is required.

Each ViewModeHandler maintains a list of ViewConfigs that dictate the View-Pairs
available for spawning. This configuration also sets the maximum number of View-Pairs per
mode, which, for this study, is capped at five per mode. This limitation ensures controlled
spawning within the scope of the user study and prevents resource overload.

4 IMPLEMENTATION 20

Additionally, ViewManager provides various events, such as onAnyCamSpawned and onAny-
CamDestroyed, which support tracking and logging during the user study. These events help
monitor user interactions with View-Pairs and facilitate data collection for analysis.

This modular, event-driven approach enhances the scalability of the system, allowing for effi-
cient management of View-Modes while maintaining a clear, maintainable code structure in the
ViewManager.

4.5 Drone Implementation

The drone implementation includes a dedicated version of the BaseViewPair called DroneView-
Pair, shown in Listing 5. This class extends the functionality of the BaseViewPair by
incorporating the DroneCamController, which encapsulates the logic required to control
the movement of the drone.

In DroneViewPair, the Awake method is overridden to initialize the DroneCamCon-
troller and associate it with the View-Pair. This setup enables seamless integration of the
camera controller within the View-Pair’s lifecycle, allowing it to inherit the base functionality
of BaseViewPair while adding specific control logic for the drone.

The ReceiveSelect method is also overridden to manage the selection state of the drone.
When called, this method toggles the IsSelected property of DroneCamController,
activating or deactivating the drone’s control based on user input. This selection mechanism is
critical for interaction management, allowing the drone to be easily targeted and controlled by
users as part of the application’s interface.

This design effectively modularizes the drone control logic, encapsulating it within the Drone-
ViewPair and allowing the ViewManager to handle drone-specific functionality indepen-
dently from other view types. This separation improves the scalability of the system, as ad-
ditional view types can be implemented without requiring modifications to the core view-
management framework.

4.5.1 Drone Controller

The DroneCamController script encapsulates the functionality required to control the
drone camera’s movement and orientation. This controller provides configurable movement
speeds and utilizes Unity’s Input System package for handling user inputs. Two key components
within the controller are the movement speed properties (Listing 6) and the DroneActions
class, which configures the InputActions necessary for controlling the drone (Listing 7).

The DroneCamController has a property, IsSelected, which manages the drone’s se-
lection state. When a drone is selected, a visual outline is applied to its model to indicate
activation. This effect is achieved using an outline package that combines all meshes and
applies a shader-based outline. In addition, while the user is controlling the drone, they are
prevented from moving, as input is redirected to drone control. To handle this, the XR Inter-
action Toolkit’s LocomotionSystem component is utilized. By toggling the active state of

4 IMPLEMENTATION 21

the LocomotionSystem GameObject, user movement is effectively disabled or re-enabled
as needed. The code for locating and enabling/disabling locomotion is shown in Listing 8.

The drone’s movement is controlled by hooking InputActions to methods that record in-
put values and store them in variables. These values are then applied in the Update method
to adjust the drone’s position and rotation. The Update method also differentiates between
movement modes, applying input values accordingly based on the selected mode. This de-
sign allows the drone to seamlessly switch between movement styles, ensuring responsive and
adaptable control that can be fine-tuned for user experience requirements in this study.

4.5.2 Drone View Mode-Handler

The DroneViewModeHandler is responsible for managing the spawning and lifecycle of
View-Cameras in drone mode. This handler is used by the ViewManager and inherits from
BaseViewModeHandler (Listing 4). It specifically implements the methods required for
spawning, activating and deactivating drone camera views, thereby providing a tailored behavior
for drone operations.

In addition to view management, DroneViewModeHandler handles essential Input-Actions
related to drone control. These include actions for spawning a new drone camera and for unse-
lecting any currently active cameras. This input-based setup allows for responsive and dynamic
interactions within the drone view mode, facilitating real-time control adjustments based on
user inputs.

The DroneViewModeHandler is configured to spawn each new drone camera at a prede-
fined distance from the user’s left controller, ensuring that the drone camera appears in a spa-
tially intuitive location relative to the user’s position. This spatial setup aids in user orientation
and simplifies the process of locating the drone camera in the virtual environment.

This modular approach, where specific input actions and spawning parameters are encapsulated
within the DroneViewModeHandler, enhances code readability and extensibility, allowing
for seamless integration of additional features or configurations tailored to drone mode.

4.6 HoverCam Implementation

The HoverCam implementation is inspired by the foundational principles outlined by Khan et
al. (2005). However, the algorithm was adapted and fine-tuned to suit the specific requirements
of this study.

Before delving into the detailed workings of the HoverCam, it is useful to explore its precursor,
the Orbit-Camera, as it provides context for the design evolution of the HoverCam.

4.6.1 Excursion: Orbit-Camera

The Orbit-Camera was an early prototype for implementing an automatic, restricted OCE ap-
proach. This system allowed users to select certain objects within the scene to act as points

4 IMPLEMENTATION 22

of focus, referred to as objects-in-the-center. Upon selecting an object, a View-Camera would
be spawned to enable the user to orbit around it. The View-Camera would always orient itself
toward a predefined point on the object, thus maintaining the object’s central position within
the user’s field of view. A conceptual visualization of the Orbit-Camera’s behavior is presented
in Figure 6.

Figure 6: The Orbit-Camera enabled the selection of predefined objects. These objects had a
fixed look-at point and the camera would orbit around them, always directed towards this fixed
point. The user could adjust the orbit of the camera, but the look-at point remained static.

The Orbit-Camera implementation leveraged Unity’s Cinemachine package, which provides
Virtual Cameras capable of orbiting around an object. This package facilitated the core func-
tionality of the Orbit-Camera. However, a limitation arose from the necessity of assigning each
Virtual Camera to a unique Unity Layer, which ensured that their views did not overlap. This,
in turn, imposed a constraint on the number of possible cameras in the system.

Despite the technical merits, the Orbit-Camera was ultimately deemed unsuitable for the user
study comparison with the drone camera system. The key limitation of the Orbit-Camera was
its rigid functionality: it could only focus on a select group of pre-configured objects and always
maintained a fixed look-at point on those objects. This rigidity would likely have introduced
bias into the comparison, as it did not allow for flexible exploration of the environment. Conse-
quently, the Orbit-Camera was replaced with the more versatile HoverCam, which offers greater
flexibility and control for the user.

4.6.2 HoverCam View Mode-Handler

The HoverCamViewModeHandler functions in a manner analogous to the DroneView-
ModeHandler, extending the BaseViewModeHandler to manage the spawning, activa-

4 IMPLEMENTATION 23

tion and deactivation of HoverCam instances. It is also responsible for handling the InputAction
associated with unselecting all active cameras.

However, unlike the DroneViewModeHandler, the HoverCamViewModeHandler does
not manage the Input-Action for spawning a HoverCam. This decision was made due to the
distinct nature of the HoverCam’s control system, which incorporates a specialized ’look-and-
fly’ functionality (McCrae et al. 2009). To ensure modularity and maintain a clean separation of
concerns, the management of this feature is delegated to a dedicated component. This modular
design approach enhances maintainability and scalability, allowing for easier adjustments and
additions to the HoverCam functionality in future iterations of the system.

In summary, while the HoverCamViewModeHandler retains responsibilities similar to its
drone counterpart, the separation of concerns allows each component to focus on its core func-
tionality, improving both performance and flexibility within the overall system.

4.6.3 HoverCam Spawner

The ’look-and-fly’ mechanic facilitates user interaction by allowing them to point a ray cast at
a specific object, press a button and either spawn a new HoverCam or reposition an existing one
to that location.

This functionality is implemented in the HoverCamSpawner script, which leverages the XR
Interaction Toolkit’s XRRayInteractor, typically assigned to the right controller by default.
The script queries the XRRayInteractor’s current hit point and checks whether the hit
object belongs to a specific layer mask. For example, one such layer mask is the Default layer,
which ensures that users cannot interact with objects like the floor or other HoverCams, as these
are assigned to the Floor and CamModel layers, respectively.

Upon detecting a valid layer, the HoverViewModeHandler is invoked, which either returns
a newly spawned HoverCam instance or the currently selected HoverCam. Once a valid target is
identified, the HoverCamController is responsible for ensuring that the camera smoothly
transitions and orients itself toward the newly selected location. This approach provides a seam-
less user experience by combining precise target selection with smooth camera movements.

By utilizing the XR Interaction Toolkit’s built-in ray casting and layer masking features, the
system ensures that user interactions are both efficient and intuitive while maintaining a clear
separation between different types of objects in the scene.

4.6.4 HoverCam Controller

The HoverCamController manages the movement of the HoverCam according to the al-
gorithm described by Khan et al. (2005). The HoverCamController exposes fields for
defining the used Input-Actions for controlling the HoverCam as well as the movement speed
and zoom speed of the HoverCam.

4 IMPLEMENTATION 24

The HoverCam is always focused on a look-at-target that can be set in this controller and it can
only be moved if it is currently selected. For the algorithm and how the movement logic works
see the original paper by Khan et al. (2005).

During the pilot test for the study, a usability problem was found. The HoverCam allows the
movement of a camera around an object with just a simple 2D vector as input. The original
HoverCam was designed for the usage with a mouse however, this means the camera was pushed
or pulled into a direction. In this study, the camera is moved with a joystick. The rest of the
algorithm does not change, however. The camera always stays a certain distance away from
the object. The original paper suggested four different modes for the ”Up” direction of the
HoverCam. The Up-Direction is important since it is needed to orient the camera. The four
suggested modes are:

1. Global: the up-direction is the up-direction of the world

2. Local: the up-direction is the local up-direction of the camera

3. Driving: ”For some objects, the user may wish to have the feeling of moving the in-
put device left or right should turn the object so that moving (the device) up is always
’forward’”(Khan et al. 2005).

4. Custom: some objects might require custom up-directions. Khan et al. (2005) give the
example of a car: when viewing the car from the side, up should be towards the roof but
when viewing the car from the top, up should be towards the hood of the car.

Prior to the pilot test, only the Global Up-Vector Model was implemented. This was later
improved since this mode brings with it a problem when viewing an object from the top. When
a user tries to view an object straight from the top, they can get stuck in this position. See Figure
7 with an example of the original paper.

In comparison, the Local Up-Vector Model does not have a problem with the ’north-pole’ as
well as the ’south-pole’ of an object. It can however lead to a camera that is upside-down. See
Figure 8 with an example of the original paper.

To circumvent these problems five different modes have been implemented for this study. The
modes are the following:

1. Global: For the up direction the world’s up is used. This leads to problems when the
camera approaches the ’north pole’ as well as the ’south pole’ of an object.

2. Restricted Global: This mode restricts the top and bottom-most area of an object as not
accessible. Therefore the camera cannot get stuck. This restricted area is defined by the
minimum angle between the up-vector of the object and the forward-vector of the camera.
See Figure 9 for further explanation.

3. Local: The up direction is the camera’s local up-vector. With this mode, there is no
problem with the ’north/south pole’. However, this can lead to an upside-down camera.

4 IMPLEMENTATION 25

Figure 7: The Global Up-Vector Model of the Hover-Camera causes issues if the camera ap-
proaches the ’north-pole’ of the object. The Camera tends to get stuck.

Figure 8: The Local Up-Vector Model of the Hover-Camera does not have a problem with the
’north-pole’ as well as the ’south-pole’ of an object, it can however lead to an upside-down
camera.

4. Rectifying Local: This mode acts similar to the Local mode, however whenever there is
no input the camera rectifies itself to align with the global up-direction. This means any
upside-down cameras turn right-side-up again.

5. Selective Local: This mode is similar to the Restricted Global mode, however instead
of not allowing movement in the restricted area whenever the area is entered, the camera
behaves as if in Rectifying Local mode. Users can get over the ’north-pole’ and once they
stop their input they get rectified to Global mode again.

4 IMPLEMENTATION 26

Figure 9: The restriction area is defined by the minimum angle between the up/down vector of
the object and the camera. The camera cannot enter the restricted area.

HoverCam Mode Pilot Test
A small pilot test was conducted to decide on the best mode for the study. Before the study,
the Selective Local Mode was hypothesized the best mode since it combines the benefits of all
modes. The subject group (n=5, average age = 25.4) was asked to test each mode. They had a
few minutes with each mode and were asked to try them out in the same environment that was
later used for the study. Participants ranked the modes from 1 (best) to 5 (worst). The result can
be seen in the following Table 1.

Contrary to the expected result the Restricted Global Mode was deemed the best mode for
the study. The disorientation of the rectifying effect was too disrupting, a more clean and
restricted mode leads to better usability. Restricted Global Mode was therefore used for the
study. During the test, the participants have given some feedback. Many participants disliked
the instant jump of the rectifying modes, this jump led to unwanted disorientation and had a
negative effect on the flow of camera control. Based on this feedback, implementing a smoother
transition between orientations could help alleviate disorientation. Whilst testing, it was also
discovered that in the local mode the camera could end up tilted even if just moving left/right

4 IMPLEMENTATION 27

HoverCam Mode Rankings
Participant Global Restricted

Global
Local Rectifying

Local
Selective
Local

1 3 5 1 4 2
2 5 1 4 3 2
3 4 1 5 2 3
4 4 1 5 3 2
5 5 1 4 3 2
Avg Rank 4.2 1.8 3.8 3 2.2

Table 1: The results of the HoverCam Mode Pilot Test indicate that the Restricted Global Mode
was ranked highest overall.

and slightly up/down. Additionally, some participants were unhappy with the speed of the
movement vignette, it was showing up too fast.

Movement Vignette
The XR Interaction Toolkit provides a Tunneling Vignette Controller4. Whenever a user moves
with the left joystick a vignette effect appears to restrict the users’ FOV. See figure 10 for an
example of the effect. The aim of this restriction is to lessen cybersickness during movement
(Wu and Suma Rosenberg 2022).

Figure 10: A vignette is displayed during the movement with the left joystick. This is done to
mitigate cybersickness.

Some participants during the pilot test for the HoverCam Mode mentioned that the speed at
which the vignette appears and disappears is too fast and abrupt. The speed was not adjusted
however due to the reason that the user study was performed soon after the HoverCam Mode

4. https://docs.unity3d.com/Packages/com.unity.xr.interaction.toolkit@2.1/manual/
tunneling-vignette-controller.html

https://docs.unity3d.com/Packages/com.unity.xr.interaction.toolkit@2.1/manual/tunneling-vignette-controller.html
https://docs.unity3d.com/Packages/com.unity.xr.interaction.toolkit@2.1/manual/tunneling-vignette-controller.html

4 IMPLEMENTATION 28

test. Due to time constraints, these settings were not adjusted before the study. In addition,
the user study is not about the movement of the users themselves but the movement of the
viewpoints. During the user study, participants did not need to move much. Furthermore, most
participants preferred using the teleport instead of the joystick movement anyway.

4.7 Avatar

The avatar used in this study was developed through a series of incremental solutions and tu-
torials, but it does not represent the most advanced or optimized implementation in terms of
functionality and system integration. Initially, the project relied on the XR Interaction Toolkit,
which did not provide a built-in avatar system. As a result, a temporary avatar was implemented
early on to allow progress in the core aspects of the study. This avatar served as a placeholder
while other critical components were being developed. However, after addressing the more
pressing requirements of the study, the avatar system was revisited and enhanced.

At this stage of development, the Meta Avatar SDK was explored as a potential solution. The
Meta Avatar SDK provided a relatively simple integration process and performed well in terms
of basic functionality. However, this implementation was limited in scope. The SDK avatar
consisted only of a floating torso without any Inverse Kinematics (IK) for the legs, making it
unsuitable for full-body interaction. Moreover, integrating the Meta Avatar SDK caused signifi-
cant incompatibilities with other aspects of the project, particularly in disrupting the interaction
logic provided by the XR Interaction Toolkit. Given the extent of these issues, it was deter-
mined that the Meta Avatar SDK would require a complete overhaul of the project’s existing
interaction systems, making it an impractical solution for the study.

Consequently, the initial temporary avatar solution was revisited and refined to create a more
complete and functional avatar. The final avatar used in this study was based on a rigged human
model provided by Mixamo5. This model was imported into Unity, where it was enhanced
using the Animation Rigging package. The humanoid rig was augmented with IK target handles
for key body parts, specifically the head, hands and feet. These additions allowed the avatar to
be more dynamic and responsive to user input, making the interaction more immersive.

To achieve proper control of the avatar’s movements, the head and hands were linked to the
movements of the user’s HMD and controllers. This allowed for the avatar’s head and hands
to follow the user’s motions in real-time, creating a more believable and interactive experience.
To implement this, a tutorial6 was followed, which included detailed steps for controlling the
IK targets of the head and hands, as well as animating hand gestures. These gestures included
actions such as grabbing, which were essential for certain tasks within the study.

A separate script was written specifically to manage the IK targets for the feet. Foot placement
was an important aspect of the avatar’s interaction with the environment and a tutorial by Unity7

5. https://www.mixamo.com/#/?page=1&query=passive+marker&type=Character
6. https://www.youtube.com/watch?v=v47lmqfrQ9s
7. https://www.youtube.com/watch?v=acMK93A-FSY

https://www.mixamo.com/#/?page=1&query=passive+marker&type=Character
https://www.youtube.com/watch?v=v47lmqfrQ9s
https://www.youtube.com/watch?v=acMK93A-FSY

4 IMPLEMENTATION 29

was used to implement realistic foot movement, ensuring that the avatar’s feet properly followed
the terrain or floor during movement.

Despite these improvements, several limitations persisted in the avatar’s functionality. One
significant limitation was that the avatar could not be viewed from a first-person perspective
(1stPP). The avatar was only visible from external viewpoints, meaning the user could not see
their own avatar while interacting in the virtual environment. This limitation was a trade-off
in the interest of development time and resource constraints. Nonetheless, the avatar system
was functional for the scope of the study and future iterations could further refine the avatar to
include full first-person visibility or more advanced IK solutions.

In summary, the avatar used in this study was a refined solution developed with the help of vari-
ous online resources. While it is not a state-of-the-art avatar system, it provided sufficient func-
tionality for the needs of the study. The final implementation offered basic full-body interaction
with the user’s HMD and controllers, but there remain areas for improvement, particularly with
regard to first-person visibility and further IK integration.

4.8 Point of Interest

The PointOfInterest script plays a critical role in the user study, as it governs the detec-
tion of POIs within the camera’s field of view and triggers events when they enter or exit the
view. This functionality is integral to determining whether a user has successfully located a POI,
which is a central task in the study. The PointOfInterest script is designed to be flexi-
ble, allowing for various detection mechanisms based on the camera’s position and visibility
criteria.

For the PointOfInterest script to function correctly, the object that contains the script
must also have a Renderer component attached. The presence of this component is essential
for determining whether the object is visible to the camera. The POI system is configurable,
allowing for a minimum required distance to be set for detection. If the camera is too far from
the object, it will not be considered within the camera’s view and no detection event will be
triggered. This distance threshold ensures that the POI is only detected when it is within a
reasonable range for the user to interact with or observe.

To provide visual feedback during the detection process, an outline effect is applied to the POI
when it enters the camera’s view. This outline highlights the object, providing clear indicators
to the user that the POI has been located. The outline effect is an essential feature for improving
user awareness of their progress in the task, as it directly reflects the visibility status of the POI.

Initially, Unity’s built-in isVisible flag, part of the renderer component, was considered the
primary method for detecting visibility. The isVisible flag returns a Boolean value that in-
dicates whether any part of the object is within the camera’s view. This flag is used by Unity to
call a MonoBehaviours OnBecameVisible and OnBecameInvisible functions. How-
ever, this approach was ultimately discarded due to its limitations. The most significant issue
with isVisible is that it returns true even if only the object’s shadow is visible to the camera,
which could result in false positives where an object is considered visible when it is not actually
observable by the user.

4 IMPLEMENTATION 30

As a more accurate alternative, ray casting was implemented to determine visibility. The
ray casting mechanism is triggered during each physics update cycle (FixedUpdate) to check
whether the POI is within the frustum (the camera’s viewable area) of any active camera in the
scene. If the object is within the camera’s frustum, it is considered visible, provided it is not
occluded by other objects. To detect occlusion, a single ray is cast from the center of the POI
toward the camera. If this ray hits an object before reaching the camera, the POI is considered
occluded and not visible.

Although this ray casting method works effectively in many cases, it has some limitations. For
example, since only one ray is cast from the center of the object, partial occlusion (where part
of the object is blocked while other parts remain visible) could result in the entire object being
marked as invisible, even if portions of it are still clearly in view. Despite this limitation, the
approach was deemed sufficient for the purposes of this study, as the primary goal was to detect
objects that are fully or largely visible in the camera’s view.

Overall, the PointOfInterest script provides an effective and efficient solution for detect-
ing visibility and triggering events based on the camera’s perspective. The use of ray casting
ensures more reliable detection than the isVisible flag and the inclusion of a configurable
distance threshold and visual feedback (via outlines) enhances the user experience by making
the interaction more intuitive and responsive.

4.9 Control-Manager

The ControlManager script governs the logic behind the Control-Table, which serves as an
interface for managing various aspects of the user study. The Control-Table, as illustrated in
Figure 11, provides users with an intuitive way to interact with the View-Camera system. It fa-
cilitates several key functionalities, such as switching the current View-Camera mode, removing
all active cameras and starting or prematurely terminating the user study.

One of the primary roles of the ControlManager is to manage the dynamic interaction with
the View-Camera system. The user can easily change the active View-Camera mode using
buttons provided on the Control-Table. This feature is crucial as the user study involves testing
different camera modes and the Control-Table allows for quick transitions between these modes
during the study.

Another important functionality provided by the ControlManager is the ability to remove
all active View-Cameras. This can be particularly useful in resetting the system between study
trials or after the user study has been completed. The Control-Manager ensures that this process
is smooth and does not leave any residual cameras that could interfere with further tests or
analysis.

In addition to its management of the View-Camera system, the Control-Table also provides
real-time feedback on the current status of the View-Camera modes. It displays which View-
Camera mode is currently active, as well as the number of active View-Cameras. This real-time
information is essential for the study, as it helps both the participants and the researchers track
the system’s state during the experiment.

4 IMPLEMENTATION 31

The Control-Table is also responsible for managing the flow of the user study. It includes but-
tons for starting and stopping the study, which provides researchers with control over the timing
of the experiment. If the study needs to be prematurely terminated, the ControlManager
ensures that all active cameras are cleared and the system is returned to its initial state.

The design of the Control-Table provides an effective and user-friendly interface for controlling
the View-Camera modes and managing the user study, contributing to the overall success of the
experimental setup.

Figure 11: A Control-Table was created. This table displays information and holds buttons for
changing the View-Camera mode, deleting all active cameras as well as starting and ending the
study.

4.10 Study-Manager

The StudyManager script is responsible for orchestrating the entire user study, providing
essential functionality for tracking, setting up and ending the study. It handles a wide range of
tasks, including the selection of POIs, controlling the diorama’s visibility, displaying informa-
tion to the user and playing audio cues to indicate when a user finds a POI for the first time.

4 IMPLEMENTATION 32

4.10.1 Tracking and Data Logging

To track and record study data, the Study-Manager utilizes a logging package from the Unity
Asset Store 8. This package allows the collection of data regarding the user’s interactions and
progress during the study. The logged data includes details such as which POIs the user has
located, how long it took to find each POI and other relevant metrics.

4.10.2 POI Configuration

Initially, the study was designed to include six POIs for the user to locate. However, the number
of POIs that can be tracked is adjustable, with the current configuration set to three. This
decision to lower the amount of POIs to find was done after the pilot study. A study with six
POIs was taking too long and was not providing any significant benefit. The Study-Manager is
responsible for determining which POIs will be used in each instance of the study, ensuring that
they are randomly selected and do not repeat.

4.10.3 Diorama Control

The Study-Manager also has control over the visibility of the diorama used in the study. This
allows for the diorama to be enabled or disabled depending on the stage of the experiment,
ensuring that the user is only interacting with the environment when appropriate.

4.10.4 Information Text and Audio Cues

Throughout the study, the Study-Manager provides real-time feedback to the user in the form
of information texts and audio cues. For example, when the user locates a POI for the first time,
an audio cue is played and information is displayed to confirm that a POI has been found. This
feedback is vital for the user’s understanding of their progress during the study and helps keep
them engaged.

4.10.5 Study Lifecycle Management

The Study-Manager is also responsible for managing the lifecycle of the study. It handles the
setup process, ensuring that all necessary components are in place before the study begins.
Once the study is completed, the Study-Manager triggers the termination sequence, saving the
logged data and preparing for the next user or study session. The system provides a clear
transition between study phases, from preparation to execution to conclusion, ensuring that
each participant’s data is correctly recorded.

8. https://assetstore.unity.com/packages/tools/input-management/fast-log-to-file-73210?srsltid=
AfmBOor6xPlU0zS9U3Qt9Re1n5w2lgWfGhqiGxjapO-WTlAKdQga5Fgt

https://assetstore.unity.com/packages/tools/input-management/fast-log-to-file-73210?srsltid=AfmBOor6xPlU0zS9U3Qt9Re1n5w2lgWfGhqiGxjapO-WTlAKdQga5Fgt
https://assetstore.unity.com/packages/tools/input-management/fast-log-to-file-73210?srsltid=AfmBOor6xPlU0zS9U3Qt9Re1n5w2lgWfGhqiGxjapO-WTlAKdQga5Fgt

5 USER STUDY 33

In summary, the StudyManager script serves as the central control hub for the user study,
managing the selection of POIs, the presentation of information and the logging of data while
maintaining control over the study’s flow and user experience.

5 User Study

The two systems are compared to each other in a user study in order to find out their differences
in usability, task difficulty and VR sickness. In addition, the user study was used to determine
the effect of control schemes on the embodiment of the drone system.

Design. The user study is a within-subject study with the independent variable of which system
is used. This independent variable has two conditions, the study is either conducted in OCE or
in drone mode. This means a participant has to find three hidden POIs in a diorama with one
of the systems, then fill out a set of questionnaires and afterward do the same again with the
other system. Note, however, that for the second task, three other POIs are used. During the
task, the users’ performance is tracked. The result of the questionnaires in combination with the
performance gives information on what system is more suitable for the task.
During the task with the drone system, additional data is tracked on what Control-Scheme is
used. In combination with embodiment questions during the questionnaire part this gives further
insight into the influence of Control-Schemes on embodiment.
In order to simulate a museum environment, a virtual large-scale diorama of a medieval town
was created using low poly synty asset packages 9. See Figure 12 for an overview of the
diorama.

Figure 12: A virtual large-scale diorama of a medieval town was built to simulate a museum
environment.

9. https://syntystore.com/collections/polygon-series

5 USER STUDY 34

Historic objects are often fragile, requiring minimal physical interaction to preserve their in-
tegrity. To display such items, they are typically protected behind glass or kept at a distance
from visitors. Large-scale dioramas present an opportunity to display original musealia within
a suitable setting that reflects the object’s historical surroundings. In contrast, a miniature dio-
rama cannot feature the original piece and usually lacks detail. However, a large-scale diorama
would still need to be off-limits to direct visitor interaction since it includes the original historic
objects. The View-Camera system addresses this limitation, allowing users to closely examine
the entire diorama from any viewpoint.
In this diorama, the three POIs were placed. The POIs are symbolized as objects that do not
belong, for instance, a burger does not belong in a medieval setting. See Figure 13 for an ex-
ample of one such POI. Originally five POIs were planned, but pilot tests have shown too many
POIs just make the user study overly time-consuming without giving any benefit. Three POIs
are enough to compare the two systems.

The diorama is also very suitable for a user study. It allows for plenty opportunity to place

Figure 13: Three such POIs are hidden in the diorama for the user to find with the two presented
methods of navigating and manipulating multiple viewpoints.

POIs at various locations for a great diversity of viewpoints that participants need to spot. The
participants are tasked to find POIs with both systems in this diorama, the POIs change how-
ever. In order to consider all POIs they need to have all POIs in view at the same time, meaning
they need to have multiple View-Camera at the same time that see the POIs.

Data Collection. During the study, the participant’s performance is tracked. This includes the
dependent variables of the completion time, which POIs were used, how many View-Cameras
were spawned and deleted and how often View-Panels were docked and undocked. Every
POI is also tracked individually on when it was first found and how often it disappeared from
view. For the drone system specifically, it was also tracked how much time was spent in the
drone-centric and user-centric Control-Scheme. In order to compare the two methods the
VRSQ (Kim et al. 2018), the System Usability Scale (SUS) (Brooke 1995) and the NASA TLX
(Hart and Staveland 1988) are used. The questionnaires were filled separately for each system
right after the participant had completed finding the POIs. The survey was conducted on a
tablet device and participants had to remove the HMD. Additionally to these questionnaires, a

5 USER STUDY 35

small survey regarding the participant’s embodiment is compiled. For both the OCE and drone
approach, a scale on which participants mark their SoE is provided. See Figures 14 and 15 for
the scales in question. For the drone approach, another scale regarding the preferred Control-
Scheme is provided. See Figure 16 for this scale. This allows to identify a possible correlation
between Control-Scheme and SoE and can also be compared to the actual time in each Control-
Scheme which is tracked during the study. The scale is inspired by the scale used by Hoppe
et al. (2022). After the completion of both tasks, the participants were verbally interviewed for
any remarks and they were also asked about their preferred approach.

Figure 14: The participants are asked to mark their SoE on an embodiment scale for the OCE
approach

Figure 15: The participants are also asked to mark their SoE on an embodiment scale for the
drone approach

Figure 16: Specifically for the drone approach participants are also asked to mark their preferred
Control-Scheme on this scale

5 USER STUDY 36

Besides the questionnaires participants were verbally interviewed for any feedback and obser-
vations were noted during their task performance.

Procedure. The participants for the user study consist of the closer social environment of the
author. A Meta Quest 2 is used for the study. Prior to the study, participants signed an informed
consent and filled out a demographic questionnaire. Afterwards, the participants are introduced
to the subject matter and are taught the system controls. Pilot tests have shown that explaining
the study and teaching the controls of two systems is quite time-consuming, especially if the
participant is not familiar with VR and basic locomotion and interaction in VR. In order to
streamline and make the procedure faster a video introduction was prepared which shows the
participants what they can expect in the study. This makes it easier to explain the participant
the concept of multiple viewpoints and their task with said viewpoints. After they have been
introduced to their task with the video, they are put into VR for them to learn and explore the
systems themselves. Detailed button controls for the system are explained to them verbally
here as well. Besides the verbal instructions, multiple diagrams of the controls are displayed
in VR. Once the participant feels sufficiently confident with the controls they are sent into the
user study. The study follows a within-subject design, meaning every participant is exposed
to both suggested systems for navigation and manipulation of viewpoints. Participants start
out with one of the two systems. The starting system alternates between the participants. The
three POIs they need to find are randomly selected from 15 possible POIs. After they have
completed finding the POIs participants are interviewed with the corresponding questionnaires
of the system. Afterwards, a new set of three POIs is randomly selected from the POIs, note
however that not the previous POIs can be selected, this makes sure the participants do not
know the location of the POIs beforehand. In case participants take too much time and cannot
find all three POIs they are able to end the study early, this is then noted in the tracked data.
On average the full procedure takes 30 to 50 minutes depending on the speed at which the
participant completes the task and on how long the introduction takes.

Participants. As already mentioned, all the participants for the study were drafted out of the
closer social environment of the author. In total twelve (7 female, 5 male) participants took
part in the study. The average age of the participants was 26. Most of the participants stated
they had used VR once or twice already. The standard deviation is 0.79, where zero is ’Never
used’ and four is ’Frequently use’. See Figure 17 for a detailed overview of the participants VR
experience.

Hypotheses. The following hypotheses are suggested:

H1 Regarding RQ1, it is hypothesized that the HoverCam (Khan et al. 2005) OCE approach
will lead to faster exploration due to its intuitive interface, which allows for quick adjust-
ments of the look-at targets via a simple ray cast mechanism.

H2 Regarding sRQ1, it is hypothesized that the drone camera leads to less cybersickness
since it moves smoother. The ’look-and-fly’ feature of the HoverCam is an abrupt jump
which might induce more cybersickness.

H3 Regarding sRQ3, it is hypothesized that no Control-Scheme will have a clear majority
since it depends on the embodiment of an individual participant.

6 RESULTS 37

Figure 17: Most of the twelve participants of the user study stated they had used VR once or
twice already.

H4 Regarding sRQ4, it is hypothesized that a correspondence between Control-Scheme and
embodiment of the participants can be observed. Participants who prefer the drone-centric
controls will more identify with the drone in the embodiment spectrum. This will be due
to it better corresponding with controls for controlling a first-person drone. Therefore
leading to better SoBO.

6 Results

The users’ study concluded with the following results. On average users completed the task
with the hover camera in 6.77min and with the drone camera in 4.76min. The hover camera
displays a standard deviation of 2.85min and the drone camera of 2.36min. Figure 18 displays
the task completion times in a boxplot and Table 2 shows the task times.

Task Completion Times
Hover Camera Drone Camera

Average 6.77min 4.76min
Std Dev 2.85min 2.36min

Table 2: The task completion times show that the drone camera is faster.

Out of the twelve participants ten preferred the drone camera. Only two chose the hover camera
as their favorite.

The questionnaires showed the following results.

6 RESULTS 38

Figure 18: The task completion times of the hover and drone camera show that on average the
drone camera is faster.

SUS. The average SUS-Score for the drone camera is 73.8 with a standard deviation of 15.39.
The average SUS-Score for the hover camera is 57.9 with a standard deviation of 18.61. See
Figure 19 for a boxplot of the SUS-Scores.

Figure 19: The drone camera displays a higher SUS-Score than the hover camera.

VRSQ. The Total Score for the VRSQ of the hover camera is 21.87 with a standard deviation of
16.4. The drone camera scored a Total Score of 12.22 with a standard deviation of 14.69. The
Figure 20 show the boxplots for the VRSQ. It is also noteworthy that the drone camera has an
average oculomotor score of 13.88 whilst the hover camera has an average score of 29.86.

NASA TLX. Due to a slip-up, the raw NASA TLX was used instead of the weighted version.

6 RESULTS 39

Figure 20: The drone camera displays a lower Total Score in the VRSQ.

However, Hart (2006) states that the raw NASA TLX, while simpler to apply, does not show a
significant difference compared to the weighted version. The results of the raw NASA TLX are
shown in the following Table 3.

NASA TLX Results
Hover Camera Drone Camera

Avg Sd Avg Sd
Mental 40.00 21.11 36.67 24.25
Physical 20.45 17.34 16.82 17.12
Temporal 36.25 24.61 30.00 27.56
Performance 42.92 22.31 25.91 18.96
Effort 43.75 23.27 25.00 16.38
Frustration 52.50 30.41 27.50 24.54
Overall 37.92 10.70 27.01 6.51

Table 3: The results of the NASA TLX show the drone camera has a better score than the hover
camera.

Embodiment Scales. The embodiment part of the user study was not conclusive. The embodi-
ment of the drone and hover camera were varying. See Figure 21 for the results. The embod-
iment for the hover camera is on average 0.608 with a standard deviation of 0.34. Where zero
is a greater embodiment towards the user and one is a greater embodiment towards the cam-
era. In comparison, the drone camera displays an average embodiment of 0.72 with a standard
deviation of 0.29. See Figure 22 for the perceived embodiment boxplots of the two modes.

The preferred Control-Scheme for the drone camera is leaning towards the drone-centric ap-

6 RESULTS 40

Figure 21: The embodiment values for both modes are not conclusive.

Figure 22: The hover camera displays a greater deviation in perceived embodiment in compar-
ison to the drone camera. Both modes do not display a conclusive embodiment.

proach. The average preferred Control-Scheme is 0.69 with a standard deviation of 0.41, one
being drone-centric and zero being user-centric. See Figure 23 for a boxplot of the preferred
Control-Scheme and see Figure 24 for the participant’s individual results.

When converted to an absolute scale (where >0.5 indicates a preference for the drone-centric
control scheme and <0.5 indicates a preference for the user-centric control scheme), eight
participants preferred the drone-centric scheme, while four preferred the user-centric scheme.

The tracking during the user study shows that on average participants spent 123.56s in the user-
centric scheme with a standard deviation of 115.32s and 109.59s in the drone-centric scheme
with a standard deviation of 103.95s. The time spent in the different Control-Schemes is visu-

7 FINDINGS AND DISCUSSION 41

Figure 23: The drone-centric approach is one on the Control-Scheme Spectrum and the user-
centric approach is zero. The participants of the study preferred the drone-centric approach on
average.

alized in Figure 25.

Note here, that per default every Drone-Camera starts in the user-centric scheme and partic-
ipants needed to swap to the drone-centric scheme by hand for every newly spawned Drone-
Camera. Also noteworthy is that during the user-study three of the participants never swapped
to the drone-centric scheme at all.

No correlation between perceived embodiment and Control-Scheme could be found. The Pear-
son correlation resulted with a value of -0.02098 for r and a p-value of 0.948186.

7 Findings and Discussion

The findings of this user study provide insights into the research questions and allow for a
critical review of the hypotheses.

7 FINDINGS AND DISCUSSION 42

Figure 24: The participants marked their preferred Control-Schemes on a scale. Most of them
prefer the drone-centric Control-Scheme.

Figure 25: On average more time is spent in the user-centric scheme than in the drone-centric.

7.1 Research Questions and Hypotheses

For RQ1, it was hypothesized that the HoverCam OCE approach would be superior due to
its intuitive interface, which enables quick adjustments through ray casting. However, results
indicate that the Drone Camera was both preferred and more effective overall. Detailed results
for the sub-research questions follow below.

The sRQ1 examined which approach led to greater cybersickness. Hypothesis H2 predicted that

7 FINDINGS AND DISCUSSION 43

the HoverCam would cause more cybersickness, as its ’look-and-fly’ feature involves abrupt
movements without smooth transitions. This hypothesis is supported by the VRSQ scores (see
Figure 20). On average, the Drone Camera scored 12.22, indicating only mild symptoms,
whereas the HoverCam scored 21.87, indicating moderate symptoms.

For sRQ2, the aim was to assess which approach would lead to better task performance and ex-
ploration. Participants completed the task significantly faster using the Drone Camera (4.76min)
compared to the HoverCam (6.77min), as shown in the completion time boxplot (Figure 18).
Usability scores further support this, with the SUS results showing an average usability score
of 57.9 for the HoverCam (indicating moderate usability), versus 73.8 for the Drone Camera
(considered acceptable usability).

The NASA TLX results (see Table 3) also emphasize the superiority of the Drone Camera with
lower perceived workload scores. Notably, the HoverCam scored a frustration level of 52.50,
significantly higher than the Drone Camera’s score of 27.50. During the study, participants
frequently commented on the difficulty of gaining an overview of the diorama with the Hov-
erCam. Additionally, ray casting was sometimes inaccurate, making it challenging to select
distant objects due to occlusion by surrounding objects or the View-Panel positioned in front of
the user. Elmqvist and Tsigas (2008) discuss multiple viewpoints as a solution for occlusion.
While multiple viewpoints may improve the overview, they do not address selection accuracy
in this case. A modification allowing users to ray cast through a View-Panel to select objects
could mitigate these issues, potentially improving navigation and reducing frustration with the
HoverCam. In addition, highlighting a hovered-over object leads to better feedback and there-
fore better usability, Argelaguet and Andujar (2013) confirms the importance of feedback for
selection in a 3D space. For highlighting, an outline around the object could be used. Outlines
have already been extensively used in this user study, if the system were to be tested in AR or
MR at some point, other options for indication could be evaluated. Fuchs, Sigel, and Dörner
(2016) have already tested multiple novel approaches for highlighting objects in AR.

In conclusion, for RQ1, the Drone Camera was more effective overall. It allowed for quicker
task completion, reduced cybersickness, better usability and ease of use, as demonstrated by
the VRSQ, SUS and NASA TLX results. Participants also expressed a clear preference for the
Drone Camera.

sRQ3 and sRQ4 explore the embodiment of participants during the study.

For sRQ3, Hypothesis H3 suggested that no control scheme would be clearly preferred. How-
ever, a majority favored the drone-centric scheme (8 of 12 participants). Notably, participants
spent more time in the user-centric scheme (123.56s on average) than in the drone-centric
scheme (115.32s). This may be attributed to the fact that the Drone Camera defaults to the
user-centric mode and despite a detailed tutorial, some participants forgot they could switch
modes. Additionally, half of the participants used the HoverCam before the Drone Camera,
which does not have multiple control schemes, potentially leading some to overlook this func-
tionality in the Drone Camera. Three participants did not use the drone-centric scheme at all.

For sRQ4, no significant correlation between control scheme and SoE was found (Pearson’s r =
-0.02, p = 0.95). Hypothesis H4 is therefore rejected. Despite Kilteni, Groten, and Slater (2012)
suggesting that aligning physical and visual stimulation can enhance SoBO, this alignment did

7 FINDINGS AND DISCUSSION 44

not increase SoE toward the drone in the drone-centric scheme. A possible explanation is that a
mere change in joystick orientation is insufficient to create a meaningful sensory link between
the physical body and the virtual representation. Joystick movement itself may not create a
strong enough correlation with body movement in VR, which could explain the lack of signifi-
cant impact on embodiment.
Overall, the participants’ embodiment was not polled sufficiently. The scale was the only mea-
sure for embodiment. It was inspired by Hoppe et al. (2022) who used a similar scale, however,
they also used additional questionnaires such as the embodiment questionnaire by Gorisse et
al. (2017), the IGroup’s Presence Questionnaire (IPQ) and the Games Experience Question-
naire (GEQ). Since the embodiment was only considered an interesting sub-research question
that emerged out of curiosity, it was not examined in greater detail. Therefore, the result of the
sRQ4 is limited and would require further research with more conclusive questionnaires for a
meaningful result.

Besides this, another observation was that participants often shifted their focus between the
View-Panel and the diorama, with some reporting changes in perceived embodiment over time.
This raises an intriguing possibility: that mere focus shifts might influence embodiment. Further
research is needed to explore this potential relationship, as it was only observed anecdotally in
this study. Thus, the interaction of embodiment, control schemes and visual focus represents a
promising direction for future work.

7.2 POI Search Time Distribution

The tracked data from the user study indicates the hidden POIs were not all equally well hidden.
See Figure 26 for a boxplot of each POI.

In the study, users had to find three randomly selected POIs out of the 15 possible POIs. With a
great enough amount of participants, this would not be a problem since overall, both drone and
hover camera would end up with the same amount of ”hard” and ”easy” to find POIs. However,
since this study only consisted of twelve participants this is not the case. Take for example the
HMD POI. It was part of six tasks, four of them being with the drone camera and two with the
hover camera. Since the HMD is one of the ”easier” POIs, the drone camera had an advantage
over the hover camera. As a comparison, also take a look at the Boxing Gloves POI. This POI
was part of five tasks, all of which were conducted with the hover camera. Overall, due to the
small amount of participants, the study is skewed.

7.3 Participant Feedback and Possible System Improvements

This section consolidates the feedback gathered from participants during the verbal interviews,
as well as observations recorded throughout the user study. These insights provide a basis for
evaluating the current system and identifying potential avenues for refinement. The remarks,
both spontaneous and prompted, are analyzed here to suggest enhancements for the system and
address areas that presented challenges or opportunities for improvement.

7 FINDINGS AND DISCUSSION 45

Figure 26: The tracked data from the user study indicates the hidden POIs were not all equally
well hidden.

7.3.1 HUD Feedback

Participants were introduced to the ability to transfer View-Panels to the HUD, offering a poten-
tially more convenient means of panel management. Despite the feature being explained during
the training phase, its usage was minimal. Only one participant utilized the HUD functionality
during the task and another explicitly described it as ”useless.” This feedback points to either
a lack of relevance for the task at hand or a need to rethink how the feature is presented and
integrated.

The limited adoption of the HUD suggests that participants did not perceive it as valuable or
intuitive. Future iterations of the system could benefit from clearer integration of the feature
within the task flow, potentially by emphasizing scenarios during training where the HUD pro-
vides a tangible advantage. Alternatively, the feature’s design could be simplified or omitted
entirely to reduce cognitive load and streamline the system.

7.3.2 Camera Feedback and Customization Needs

Hover Camera Participants commonly expressed dissatisfaction with the hover camera when
tasked with navigating the large diorama. While it was noted that the hover camera was effective
for inspecting objects at close range, several limitations became evident:

• Restricted Field of View: The hover camera’s perspective was not advantageous to iden-
tifying hidden objects in the expansive diorama. Some participants attempted to zoom out
or position the camera higher in an effort to gain a broader overview, but these adjustments
often fell short.

7 FINDINGS AND DISCUSSION 46

• Navigational Limitations: The hover camera performed poorly in tight or cluttered ar-
eas, such as corners, where visibility and maneuverability were constrained.

• Focus Discrepancies: Participants frequently zoomed out for an enhanced overview but,
in doing so, ignored or lost focus on the object that the camera was originally targeting.

The prime problem of the hover cam was the selection of distant objects. The ray cast made it
challenging to discern which object was currently being targeted. Users expressed that having
additional visual feedback would be beneficial in this context. Adding an outline around the
hovered object could help clarify selection, reducing frustration and improving accuracy when
interacting with far-off objects. This feature would likely enhance the intuitiveness and usability
of the selection process.

These observations underscore that while the hover camera is well-suited for detailed object
interactions, its application in larger, more exploratory tasks is limited. Adjustments to its field
of view or navigational mechanics could make it more versatile.

Drone Camera The drone camera was preferred by participants for tasks requiring broader
scene exploration. However, several participants highlighted the need for greater control cus-
tomization to better suit their individual preferences. Desired adjustments included:

• Customizable movement speed and zoom sensitivity.

• The ability to invert axis controls for look rotation.

• Setting a default mode for the drone camera that aligns with user preferences.

Additionally, participants suggested reconfiguring joystick functions to make control more in-
tuitive. Specifically, assigning the right joystick to control movement while allowing the left
joystick to adjust vertical positioning was recommended.

Shared Feedback With both the drone camera and the hover camera it is possible to navi-
gate the camera into objects and see the meshes from the inside. These viewpoints are often
disorienting and lead to losing overview of where the camera is located at. A possible solution
for this is to not allow the camera to fly into meshes. For instance Ortega, Stuerzlinger, and
Scheurich (2015) introduced SHOCam which is an improved version of the HoverCam with
this exact feature.

Participants remarked that the perceived embodiment changed over time. Depending on their
current task and focus they either felt more like the camera or the operator of it. They especially
remarked on this when they had to mark their perceived embodiment on the embodiment scale
during the questionnaire. Besides this one participant also remarked that the preferred camera
mode changed as well. Depending on if they see the object they focus on, they prefer the hover
or drone camera. Preferring the hover camera when the object is close and visible and the drone
camera if not.

7 FINDINGS AND DISCUSSION 47

7.3.3 View-Panel Organization and Interaction Patterns

Participants displayed a variety of strategies for organizing and managing View-Panels during
the study. Most participants followed a sequential workflow:

1. Spawn a View-Pair.

2. Relocate the View-Panel to a desired spot.

3. Locate a POI.

4. Move the View-Panel aside.

5. Continue from 1. until all POIs are found.

While this approach was prevalent, some participants adopted unique methods:

• Head Movement for Placement: One participant preemptively moved their head before
spawning a new View-Panel to control where the panel appeared.

• Sky Placement: Another participant preferred positioning panels high above the scene
to keep them visually unobtrusive.

• Symmetrical Organization: Several participants consistently placed panels symmetri-
cally to their left and right, typically at chest level for easy access.

These diverse approaches suggest a need for more advanced View-Panel management tools.
Features such as automated organization, stackable panels, or a grouping function could provide
participants with a more efficient way to handle multiple panels simultaneously.

7.3.4 Outline and Highlighting Features

The system employed outline effects to highlight important objects and cameras:

• Blue Outline: Indicates the focused object of the hover camera.

• Green Outline: Highlights a selected View-Camera.

• Yellow Outline: Marks discovered POI.

While these outlines proved useful for object identification, participants noted instances of con-
fusion caused by overlapping outlines. For example, when a focused object was simultaneously
visible through a View-Panel and directly within the user’s field of view, duplicate outlines
created visual clutter. Figure 27 demonstrates this issue.

To address this, the system could be modified to allow View-Panels to occlude outline effects.
This adjustment would reduce visual noise, making the highlighting system more intuitive and
less distracting.

7 FINDINGS AND DISCUSSION 48

Figure 27: The hover camera shows a blue outline around its focused object. A selected View-
Camera is also indicated with a green outline. These outlines shine through objects. This can
lead to confusion if they shine through the View-Panel, which in turn also displays the blue
outline the View-Camera sees.

7.3.5 Button Mapping and Interaction Issues

Participants often struggled with the button mappings, particularly when interacting with UI
buttons. Many mistakenly used the ‘A’ button, which was assigned to spawn a new View-
Pair, instead of the Trigger button designated for interaction. This confusion interrupted the
workflow, especially when participants had to clean up unintended View-Pairs.

In part, the issue might be caused by the hover camera’s ‘look-and-fly’ feature, which also used
the ‘A’ button. Participants were already used to interacting with the ’A’ button due to this.
Reassigning this functionality to the Trigger button would better align with user expectations of
having a single interaction button, improving usability and minimizing frustration.

Notably, many participants appeared to forget the existence of the ’look-and-fly’ feature, despite
it being thoroughly explained during the training phase. They kept on deleting their newly
spawned drone camera to then spawn a new camera on a new object. A potential explanation
for this is the study’s within-subject design. Half of the participants used the drone camera
before switching to the hover camera. As the drone camera lacks the ’look-and-fly’ feature,
participants may have been primed to disregard it. Conversely, participants who used the hover
camera first did not have a problem when spawning and moving the drone camera.

7 FINDINGS AND DISCUSSION 49

Another issue observed during the study was the unintentional movement of the hover cam-
era while using the ’look-and-fly’ feature. When participants identified a POI, their typical
intention was to leave the current camera in place and spawn a new one to continue exploring.
However, participants often forgot to deselect the hover camera before using the ’look-and-fly’
feature, inadvertently moving it away from the identified POI. This forced them to backtrack
and reposition the camera, interrupting their workflow.

This problem may also stem from inconsistencies in camera control mechanics between the two
systems. For example, the drone camera allows spawning a new camera with the ’A’ button,
regardless of whether a camera is currently selected. In contrast, the hover camera spawns a
new camera only if no other camera is selected. This discrepancy may have contributed to
participant confusion.

To address these issues, a potential improvement could involve assigning distinct buttons for
the ’look-and-fly’ feature and the spawning of new cameras. This adjustment could help reduce
confusion and improve the overall user experience.

7.3.6 Proposed Combined Camera System

Based on participant feedback, a hybrid camera system is proposed to capitalize on the strengths
of both the drone and hover cameras:

• Primary Functionality: The system operates as a drone camera, enabling users to navi-
gate large environments effectively.

• Object Selection: Users can ray cast through the View-Panel to highlight objects of inter-
est, with hovered objects outlined for clarity. Fuchs, Sigel, and Dörner (2016) researched
methods for highlighting objects in AR. Their conclusion lists Hotplate as a suitable op-
tion for highlighting. Hotplate being a technique that displays swirling upwards-moving
particles originating from the base of the object.

• Seamless Transition: Selecting an object initiates a smooth transition into hover camera
mode, allowing detailed inspection of the object without abrupt viewpoint changes.

• Mode Switching: A button within the View-Panel’s UI allows users to return to drone
camera mode, facilitating continued exploration.

This combined system balances the drone camera’s expansive navigational capabilities with the
hover camera’s precision for object-focused tasks. Incorporating additional improvements, such
as customizable controls, refined button mappings and enhanced highlighting, would further
elevate the system’s usability and overall participant satisfaction.

Kim and Xiong (2022) researched a similar approach for tackling the problem of distant object
selection. They proposed and tested ViewfinderVR to overcome the limitations of ray casting.
ViewfinderVR utilizes a virtual viewfinder panel which is a modern adaptation of the through-
the-lens metaphor (Gleicher and Witkin 1992). The viewfinder panel acts as a virtual mirror

8 CONCLUSION AND FUTURE WORK 50

that can be placed and manipulated. The mirror allows for the selection of objects via ray casts
or touch that are seen in its reflection. A Fitts’ law-based test (Fitts 1954) and NASA TLX
results show the ViewfinderVR outperforms regular ray-cast selection. It is expected that similar
improvement can be achieved with the proposed combined camera system.

8 Conclusion and Future Work

This thesis explored the manipulation of multiple viewpoints in VR for a museum setting, inves-
tigating how this could offer novel ways to exhibit objects. While conducted in VR, technolo-
gies such as those described by Lindlbauer and Wilson (2018) could make similar experiences
possible in MR. The scenario of a large-scale diorama was used as an example. A user study
compared two distinct viewpoint manipulation methods to assess whether a restrictive auto-
mated OCE approach or a free-flying drone approach would be more effective.

Participants were asked to find hidden POI objects in the diorama using either a freely control-
lable drone camera or a modified HoverCam (Khan et al. 2005) with a ’look-and-fly’ feature
(McCrae et al. 2009). The effectiveness of each approach was measured by cybersickness, us-
ability, task completion time and overall participant feedback. Results showed a preference for
the drone approach, which also had better outcomes in terms of cybersickness reduction, us-
ability and task completion time. However, participants suggested that the hover camera might
be superior for detailed inspection, indicating an area for further study.

Beyond manipulation effectiveness, this study briefly explored embodiment, emerging from
two different control schemes used for the drone camera. It was hypothesized that participants’
preferred control scheme might correlate with their perceived embodiment—feeling as though
they were either controlling the drone or embodying it. This hypothesis was based on Kilteni,
Groten, and Slater (2012), who define SoE as including SoBO, which is influenced by avatar
alignment with user actions. No significant correlation was found, potentially due to frequent
focus shifts. The influence of control schemes on SoE, as well as the impact of focus shifts on
embodiment, require further investigation.

A suggested improvement to the system is a combination of the drone camera for scene overview
and the hover camera for detailed inspection.

This study focuses on large-scale dioramas, but future research could explore larger environ-
ments, such as a historical site for instance where users navigate a virtual castle. With AR,
users could view the original state of damaged areas, enhancing historical understanding. Keil
et al. (2011) have done something similar already but on a smaller scale, they overlay a histori-
cal 3D representation of a building on a mobile phone. Zhang et al. (2021) have used drones in
order to create live photogrammetry of objects. Their system is limited by the latency of send-
ing data from drones to a ground station however, it could enable AR viewpoints on a larger
scale. Although this thesis focuses on viewpoint manipulation, the potential applications in MR
and AR are vast and worthy of further exploration.

REFERENCES 51

References

Argelaguet, Ferran, and Carlos Andujar. 2013. “A survey of 3D object selection techniques for
virtual environments.” Computers & Graphics 37 (3): 121–136. ISSN: 0097-8493. https:
//doi.org/https://doi.org/10.1016/j.cag.2012.12.003. https://www.sciencedirect.com/
science/article/pii/S0097849312001793.

Boubekeur, Tamy. 2014. “ShellCam: Interactive geometry-aware virtual camera control.” In
2014 IEEE International Conference on Image Processing (ICIP), 4003–4007. https://doi.
org/10.1109/ICIP.2014.7025813.

Brooke, John. 1995. “SUS: A quick and dirty usability scale.” Usability Eval. Ind. 189 (Novem-
ber).

Cao, Jiaxun, Qingyang He, Zhuo Wang, RAY LC, and Xin Tong. 2023. “DreamVR: Curating
an Interactive Exhibition in Social VR Through an Autobiographical Design Study.” In
Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems. CHI
’23. Hamburg, Germany: Association for Computing Machinery. ISBN: 9781450394215.
https://doi.org/10.1145/3544548.3581362. https://doi.org/10.1145/3544548.3581362.

Chae, Han Joo, Jeong-in Hwang, and Jinwook Seo. 2018. “Wall-based Space Manipulation
Technique for Efficient Placement of Distant Objects in Augmented Reality.” In Proceed-
ings of the 31st Annual ACM Symposium on User Interface Software and Technology, 45–
52. UIST ’18. ¡conf-loc¿, ¡city¿Berlin¡/city¿, ¡country¿Germany¡/country¿, ¡/conf-loc¿:
Association for Computing Machinery. ISBN: 9781450359481. https://doi.org/10.1145/
3242587.3242631. https://doi.org/10.1145/3242587.3242631.

Cmentowski, Sebastian, Sukran Karaosmanoglu, Fabian Kievelitz, Frank Steinicke, and Jens
Krüger. 2023. “A Matter of Perspective: Designing Immersive Character Transitions for
Virtual Reality Games.” Proc. ACM Hum.-Comput. Interact. (New York, NY, USA) 7, no.
CHI PLAY (October). https://doi.org/10.1145/3611023. https://doi.org/10.1145/3611023.

Delgado, Johnny, Rachel West, Angelos Barmpoutis, Seung Hyuk Jang, Edward Stanley, and
Hyo Kang. 2024. “Enhancing Museum Experience with VR by Situating 3D Collections in
Contex.” In Proceedings of the 23rd Annual ACM Interaction Design and Children Confer-
ence, 670–675. IDC ’24. Delft, Netherlands: Association for Computing Machinery. ISBN:
9798400704420. https://doi.org/10.1145/3628516.3659372. https://doi.org/10.1145/
3628516.3659372.

Desvallées, André, and François Mairesse. 2010. Key Concepts of Museology. Paris, France:
Armand Colin. ISBN: 9782200253981.

https://doi.org/https://doi.org/10.1016/j.cag.2012.12.003
https://doi.org/https://doi.org/10.1016/j.cag.2012.12.003
https://www.sciencedirect.com/science/article/pii/S0097849312001793
https://www.sciencedirect.com/science/article/pii/S0097849312001793
https://doi.org/10.1109/ICIP.2014.7025813
https://doi.org/10.1109/ICIP.2014.7025813
https://doi.org/10.1145/3544548.3581362
https://doi.org/10.1145/3544548.3581362
https://doi.org/10.1145/3242587.3242631
https://doi.org/10.1145/3242587.3242631
https://doi.org/10.1145/3242587.3242631
https://doi.org/10.1145/3611023
https://doi.org/10.1145/3611023
https://doi.org/10.1145/3628516.3659372
https://doi.org/10.1145/3628516.3659372
https://doi.org/10.1145/3628516.3659372

REFERENCES 52

Dufresne, Florian, Charlotte Dubosc, Geoffrey Gorisse, and Olivier Christmann. 2024. “Un-
derstanding the Impact of Coherence between Virtual Representations and Possible Inter-
actions on Embodiment in VR: an Affordance Perspective.” In Extended Abstracts of the
2024 CHI Conference on Human Factors in Computing Systems. CHI EA ’24. Associa-
tion for Computing Machinery. ISBN: 9798400703317. https://doi.org/10.1145/3613905.
3650752. https://doi.org/10.1145/3613905.3650752.

Elmqvist, Niklas, and Philippas Tsigas. 2008. “A Taxonomy of 3D Occlusion Management for
Visualization.” IEEE Transactions on Visualization and Computer Graphics 14 (5): 1095–
1109. https://doi.org/10.1109/TVCG.2008.59.

Erat, Okan, Werner Alexander Isop, Denis Kalkofen, and Dieter Schmalstieg. 2018. “Drone-
Augmented Human Vision: Exocentric Control for Drones Exploring Hidden Areas.” IEEE
Transactions on Visualization and Computer Graphics 24 (4): 1437–1446. https://doi.org/
10.1109/TVCG.2018.2794058.

Fitts, P. M. 1954. “The information capacity of the human motor system in controlling the
amplitude of movement.” Journal of Experimental PSychology 74:381–391.

Fribourg, Rebecca, Ferran Argelaguet, Anatole Lécuyer, and Ludovic Hoyet. 2020. “Avatar and
Sense of Embodiment: Studying the Relative Preference Between Appearance, Control and
Point of View.” IEEE Transactions on Visualization and Computer Graphics 26 (5): 2062–
2072. https://doi.org/10.1109/TVCG.2020.2973077.

Fuchs, Sebastian, Mario Sigel, and Ralf Dörner. 2016. “Highlighting Techniques for Real En-
tities in Augmented Reality.” In Proceedings of the 11th Joint Conference on Computer
Vision, Imaging and Computer Graphics Theory and Applications - Volume 1: GRAPP,
(VISIGRAPP 2016), 259–270. INSTICC, SciTePress. ISBN: 978-989-758-175-5. https :
//doi.org/10.5220/0005674002570268.

Gallagher, Shaun. 2000. “Gallagher, S. 2000. Philosophical conceptions of the self: implications
for cognitive science.” Trends in Cognitive Sciences 4 (January): 14–21.

Gleicher, Michael, and Andrew Witkin. 1992. “Through-the-lens camera control.” In Proceed-
ings of the 19th Annual Conference on Computer Graphics and Interactive Techniques,
331–340. SIGGRAPH ’92. New York, NY, USA: Association for Computing Machinery.
ISBN: 0897914791. https://doi.org/10.1145/133994.134088. https://doi.org/10.1145/
133994.134088.

Gorisse, Geoffrey, Olivier Christmann, Etienne Amato, and Simon Richir. 2017. “First- and
Third-Person Perspectives in Immersive Virtual Environments: Presence and Performance
Analysis of Embodied Users.” Frontiers in Robotics and AI 4 (July): 33. https://doi.org/
10.3389/frobt.2017.00033.

Hart, Sandra G. 2006. “Nasa-Task Load Index (NASA-TLX); 20 Years Later.” Proceedings of
the Human Factors and Ergonomics Society Annual Meeting 50 (9): 904–908. https://doi.o
rg/10.1177/154193120605000909. eprint: https://doi.org/10.1177/154193120605000909.
https://doi.org/10.1177/154193120605000909.

https://doi.org/10.1145/3613905.3650752
https://doi.org/10.1145/3613905.3650752
https://doi.org/10.1145/3613905.3650752
https://doi.org/10.1109/TVCG.2008.59
https://doi.org/10.1109/TVCG.2018.2794058
https://doi.org/10.1109/TVCG.2018.2794058
https://doi.org/10.1109/TVCG.2020.2973077
https://doi.org/10.5220/0005674002570268
https://doi.org/10.5220/0005674002570268
https://doi.org/10.1145/133994.134088
https://doi.org/10.1145/133994.134088
https://doi.org/10.1145/133994.134088
https://doi.org/10.3389/frobt.2017.00033
https://doi.org/10.3389/frobt.2017.00033
https://doi.org/10.1177/154193120605000909
https://doi.org/10.1177/154193120605000909
https://doi.org/10.1177/154193120605000909
https://doi.org/10.1177/154193120605000909

REFERENCES 53

Hart, Sandra G., and Lowell E. Staveland. 1988. “Development of NASA-TLX (Task Load
Index): Results of Empirical and Theoretical Research.” In Human Mental Workload,
edited by Peter A. Hancock and Najmedin Meshkati, 52:139–183. Advances in Psychol-
ogy. North-Holland. https://doi.org/https://doi.org/10.1016/S0166-4115(08)62386-9.
https://www.sciencedirect.com/science/article/pii/S0166411508623869.

Herrera, Fernanda, Soo Youn Oh, and Jeremy N. Bailenson. 2018. “Effect of Behavioral Real-
ism on Social Interactions Inside Collaborative Virtual Environments.” Presence: Teleop-
erators and Virtual Environments 27, no. 2 (February): 163–182. https://doi.org/10.1162/
pres a 00324. eprint: https://direct.mit.edu/pvar/article-pdf/27/2/163/2003610/pres\ a\
00324.pdf. https://doi.org/10.1162/pres%5C a%5C 00324.

Hettinger, Lawrence J., and Gary E. Riccio. 1992. “Visually Induced Motion Sickness in Virtual
Environments.” Presence: Teleoperators and Virtual Environments 1, no. 3 (August): 306–
310. https://doi.org/10.1162/pres.1992.1.3.306. eprint: https://direct.mit.edu/pvar/article-
pdf/1/3/306/1622390/pres.1992.1.3.306.pdf. https://doi.org/10.1162/pres.1992.1.3.306.

Hoppe, Matthias, Andrea Baumann, Patrick Chofor Tamunjoh, Tonja-Katrin Machulla, Paweł
W. Woźniak, Albrecht Schmidt, and Robin Welsch. 2022. “There Is No First- or Third-
Person View in Virtual Reality: Understanding the Perspective Continuum.” In Proceed-
ings of the 2022 CHI Conference on Human Factors in Computing Systems. CHI ’22.
New Orleans, LA, USA: Association for Computing Machinery. ISBN: 9781450391573.
https://doi.org/10.1145/3491102.3517447. https://doi.org/10.1145/3491102.3517447.

Inoue, Maakito, Kazuki Takashima, Kazuyuki Fujita, and Yoshifumi Kitamura. 2023. “Bird-
ViewAR: Surroundings-aware Remote Drone Piloting Using an Augmented Third-person
Perspective.” In Proceedings of the 2023 CHI Conference on Human Factors in Comput-
ing Systems. CHI ’23. Hamburg, Germany: Association for Computing Machinery. ISBN:
9781450394215. https://doi.org/10.1145/3544548.3580681. https://doi.org/10.1145/
3544548.3580681.

Inoue, Yasuyuki, and Michiteru Kitazaki. 2021. “Virtual Mirror and Beyond: The Psychological
Basis for Avatar Embodiment via a Mirror.” Journal of Robotics and Mechatronics 33
(October): 1004–1012. https://doi.org/10.20965/jrm.2021.p1004.

Jankowski, Jacek, and Martin Hachet. 2013. “A Survey of Interaction Techniques for Interactive
3D Environments.” In Eurographics 2013 - STAR. Girona, Spain, May. https://inria.hal.
science/hal-00789413.

Keil, Jens, Michael Zollner, Mario Becker, Folker Wientapper, Timo Engelke, and Harald
Wuest. 2011. “The House of Olbrich — An Augmented Reality tour through architectural
history.” In 2011 IEEE International Symposium on Mixed and Augmented Reality - Arts,
Media, and Humanities, 15–18. https://doi.org/10.1109/ISMAR-AMH.2011.6093651.

https://doi.org/https://doi.org/10.1016/S0166-4115(08)62386-9
https://www.sciencedirect.com/science/article/pii/S0166411508623869
https://doi.org/10.1162/pres_a_00324
https://doi.org/10.1162/pres_a_00324
https://direct.mit.edu/pvar/article-pdf/27/2/163/2003610/pres_a_00324.pdf
https://direct.mit.edu/pvar/article-pdf/27/2/163/2003610/pres_a_00324.pdf
https://doi.org/10.1162/pres%5C_a%5C_00324
https://doi.org/10.1162/pres.1992.1.3.306
https://direct.mit.edu/pvar/article-pdf/1/3/306/1622390/pres.1992.1.3.306.pdf
https://direct.mit.edu/pvar/article-pdf/1/3/306/1622390/pres.1992.1.3.306.pdf
https://doi.org/10.1162/pres.1992.1.3.306
https://doi.org/10.1145/3491102.3517447
https://doi.org/10.1145/3491102.3517447
https://doi.org/10.1145/3544548.3580681
https://doi.org/10.1145/3544548.3580681
https://doi.org/10.1145/3544548.3580681
https://doi.org/10.20965/jrm.2021.p1004
https://inria.hal.science/hal-00789413
https://inria.hal.science/hal-00789413
https://doi.org/10.1109/ISMAR-AMH.2011.6093651

REFERENCES 54

Khan, Azam, Ben Komalo, Jos Stam, George Fitzmaurice, and Gordon Kurtenbach. 2005.
“HoverCam: interactive 3D navigation for proximal object inspection.” In Proceedings
of the 2005 Symposium on Interactive 3D Graphics and Games, 73–80. I3D ’05. Wash-
ington, District of Columbia: Association for Computing Machinery. ISBN: 1595930132.
https://doi.org/10.1145/1053427.1053439. https://doi.org/10.1145/1053427.1053439.

Kilteni, Konstantina, Raphaela Groten, and Mel Slater. 2012. “The Sense of Embodiment in
Virtual Reality.” Presence Teleoperators & Virtual Environments 21 (November). https:
//doi.org/10.1162/PRES a 00124.

Kim, Hyun K., Jaehyun Park, Yeongcheol Choi, and Mungyeong Choe. 2018. “Virtual reality
sickness questionnaire (VRSQ): Motion sickness measurement index in a virtual reality
environment.” Applied Ergonomics 69:66–73. ISSN: 0003-6870. https : / /doi .org /https :
//doi.org/10.1016/j.apergo.2017.12.016. https://www.sciencedirect.com/science/article/
pii/S000368701730282X.

Kim, Minju, Yuhyun Lee, and Jungjin Lee. 2022. “Multi-view Layout Design for VR Con-
cert Experience.” In Proceedings of the 30th ACM International Conference on Multime-
dia, 818–826. MM ’22. Lisboa, Portugal: Association for Computing Machinery. ISBN:
9781450392037. https://doi.org/10.1145/3503161.3548347. https://doi.org/10.1145/
3503161.3548347.

Kim, Woojoo, and Shuping Xiong. 2022. “ViewfinderVR: configurable viewfinder for selection
of distant objects in VR.” Virtual Reality 26, no. 4 (May): 1573–1592. ISSN: 1434-9957.
https://doi.org/10.1007/s10055-022-00649-z. http://dx.doi.org/10.1007/s10055-022-
00649-z.

Kusunoki, Mikiya, Ryo Furuhama, Ryusuke Toshima, Hazuki Mori, Haoran Xie, Tzu-Yang
Wang, Takaya Yuizono, Toshiki Sato, and Kazunori Miyata. 2023. “MultiBrush: 3D Brush
Painting Using Multiple Viewpoints in Virtual Reality.” In 2023 9th International Confer-
ence on Virtual Reality (ICVR), 481–486. https : / /doi .org/10.1109/ICVR57957.2023.
10169798.

Latoschik, Marc Erich, and Carolin Wienrich. 2022. “Congruence and Plausibility, Not Pres-
ence: Pivotal Conditions for XR Experiences and Effects, a Novel Approach.” Frontiers
in Virtual Reality 3. ISSN: 2673-4192. https : / / doi . org / 10 . 3389 / frvir . 2022 . 694433.
https://www.frontiersin.org/journals/virtual-reality/articles/10.3389/frvir.2022.694433.

Lindlbauer, David, and Andy D. Wilson. 2018. “Remixed Reality: Manipulating Space and
Time in Augmented Reality.” In Proceedings of the 2018 CHI Conference on Human Fac-
tors in Computing Systems, 1–13. CHI ’18. Montreal QC, Canada: Association for Com-
puting Machinery. ISBN: 9781450356206. https : / /doi .org /10 .1145/3173574.3173703.
https://doi.org/10.1145/3173574.3173703.

McCrae, James, Igor Mordatch, Michael Glueck, and Azam Khan. 2009. “Multiscale 3D navi-
gation.” In Proceedings of the 2009 Symposium on Interactive 3D Graphics and Games, 7–
14. I3D ’09. Boston, Massachusetts: Association for Computing Machinery. ISBN: 9781605584294.
https://doi.org/10.1145/1507149.1507151. https://doi.org/10.1145/1507149.1507151.

https://doi.org/10.1145/1053427.1053439
https://doi.org/10.1145/1053427.1053439
https://doi.org/10.1162/PRES_a_00124
https://doi.org/10.1162/PRES_a_00124
https://doi.org/https://doi.org/10.1016/j.apergo.2017.12.016
https://doi.org/https://doi.org/10.1016/j.apergo.2017.12.016
https://www.sciencedirect.com/science/article/pii/S000368701730282X
https://www.sciencedirect.com/science/article/pii/S000368701730282X
https://doi.org/10.1145/3503161.3548347
https://doi.org/10.1145/3503161.3548347
https://doi.org/10.1145/3503161.3548347
https://doi.org/10.1007/s10055-022-00649-z
http://dx.doi.org/10.1007/s10055-022-00649-z
http://dx.doi.org/10.1007/s10055-022-00649-z
https://doi.org/10.1109/ICVR57957.2023.10169798
https://doi.org/10.1109/ICVR57957.2023.10169798
https://doi.org/10.3389/frvir.2022.694433
https://www.frontiersin.org/journals/virtual-reality/articles/10.3389/frvir.2022.694433
https://doi.org/10.1145/3173574.3173703
https://doi.org/10.1145/3173574.3173703
https://doi.org/10.1145/1507149.1507151
https://doi.org/10.1145/1507149.1507151

REFERENCES 55

Narkar, Anish S., Jan J. Michalak, Candace E. Peacock, and Brendan David-John. 2024. “GazeIn-
tent: Adapting Dwell-time Selection in VR Interaction with Real-time Intent Modeling.”
Proc. ACM Hum.-Comput. Interact. (New York, NY, USA) 8, no. ETRA (May). https :
//doi.org/10.1145/3655600. https://doi.org/10.1145/3655600.

Norman, Donald A. 2002. The Design of Everyday Things. USA: Basic Books, Inc. ISBN:
9780465067107.

Ortega, Michael, Wolfgang Stuerzlinger, and Doug Scheurich. 2015. “SHOCam: A 3D Orbit-
ing Algorithm.” In Proceedings of the 28th Annual ACM Symposium on User Interface
Software & Technology, 119–128. UIST ’15. Charlotte, NC, USA: Association for Com-
puting Machinery. ISBN: 9781450337793. https : / /doi .org /10 .1145/2807442.2807496.
https://doi.org/10.1145/2807442.2807496.

Otono, Riku, Adélaı̈de Genay, Monica Perusquı́a-Hernández, Naoya Isoyama, Hideaki Uchiyama,
Martin Hachet, Anatole Lécuyer, and Kiyoshi Kiyokawa. 2023. “I’m Transforming! Ef-
fects of Visual Transitions to Change of Avatar on the Sense of Embodiment in AR.”
In 2023 IEEE Conference Virtual Reality and 3D User Interfaces (VR), 83–93. https :
//doi.org/10.1109/VR55154.2023.00024.

Pierce, Jeffrey S., Brian C. Stearns, and Randy Pausch. 1999. “Voodoo dolls: seamless inter-
action at multiple scales in virtual environments.” In Proceedings of the 1999 Symposium
on Interactive 3D Graphics, 141–145. I3D ’99. Atlanta, Georgia, USA: Association for
Computing Machinery. ISBN: 1581130821. https : / / doi . org / 10 . 1145 / 300523 . 300540.
https://doi.org/10.1145/300523.300540.

Pohl, Henning, Klemen Lilija, Jess McIntosh, and Kasper Hornbæk. 2021. “Poros: Configurable
Proxies for Distant Interactions in VR.” In Proceedings of the 2021 CHI Conference on
Human Factors in Computing Systems. CHI ’21. Yokohama, Japan: Association for Com-
puting Machinery. ISBN: 9781450380966. https : / /doi .org /10 .1145/3411764.3445685.
https://doi.org/10.1145/3411764.3445685.

Pointecker, Fabian, Judith Friedl, Daniel Schwajda, Hans-Christian Jetter, and Christoph An-
thes. 2022. “Bridging the Gap Across Realities: Visual Transitions Between Virtual and
Augmented Reality.” In 2022 IEEE International Symposium on Mixed and Augmented
Reality (ISMAR), 827–836. https://doi.org/10.1109/ISMAR55827.2022.00101.

Poupyrev, Ivan, Mark Billinghurst, Suzanne Weghorst, and Tadao Ichikawa. 1996. “The go-go
interaction technique: non-linear mapping for direct manipulation in VR.” In Proceedings
of the 9th Annual ACM Symposium on User Interface Software and Technology, 79–
80. UIST ’96. Seattle, Washington, USA: Association for Computing Machinery. ISBN:
0897917987. https://doi.org/10.1145/237091.237102. https://doi.org/10.1145/237091.
237102.

https://doi.org/10.1145/3655600
https://doi.org/10.1145/3655600
https://doi.org/10.1145/3655600
https://doi.org/10.1145/2807442.2807496
https://doi.org/10.1145/2807442.2807496
https://doi.org/10.1109/VR55154.2023.00024
https://doi.org/10.1109/VR55154.2023.00024
https://doi.org/10.1145/300523.300540
https://doi.org/10.1145/300523.300540
https://doi.org/10.1145/3411764.3445685
https://doi.org/10.1145/3411764.3445685
https://doi.org/10.1109/ISMAR55827.2022.00101
https://doi.org/10.1145/237091.237102
https://doi.org/10.1145/237091.237102
https://doi.org/10.1145/237091.237102

REFERENCES 56

Praetorius, Anna Samira, and Daniel Görlich. 2020. “How Avatars Influence User Behavior:
A Review on the Proteus Effect in Virtual Environments and Video Games.” In Proceed-
ings of the 15th International Conference on the Foundations of Digital Games. FDG ’20.
Bugibba, Malta: Association for Computing Machinery. ISBN: 9781450388078. https: / /
doi.org/10.1145/3402942.3403019. https://doi.org/10.1145/3402942.3403019.

Prouzeau, Arnaud, Antoine Lhuillier, Barrett Ens, Daniel Weiskopf, and Tim Dwyer. 2019.
“Visual Link Routing in Immersive Visualisations.” In Proceedings of the 2019 ACM In-
ternational Conference on Interactive Surfaces and Spaces, 241–253. ISS ’19. Daejeon,
Republic of Korea: Association for Computing Machinery. ISBN: 9781450368919. https:
//doi.org/10.1145/3343055.3359709. https://doi.org/10.1145/3343055.3359709.

Ryu, Jun, Seunghoon Park, and Gerard Jounghyun Kim. 2023. “Sickness Reduction in FPV
Drone Control: Improved Effects of Reverse Optical Flow with Static Landmarks Only.”
In Proceedings of the 29th ACM Symposium on Virtual Reality Software and Technol-
ogy. VRST ’23. Christchurch, New Zealand: Association for Computing Machinery. ISBN:
9798400703287. https://doi.org/10.1145/3611659.3617219. https://doi.org/10.1145/
3611659.3617219.

Schubert, Thomas, Frank Friedmann, and Holger Regenbrecht. 2001. “The Experience of Pres-
ence: Factor Analytic Insights.” Presence: Teleoper. Virtual Environ. (Cambridge, MA,
USA) 10, no. 3 (June): 266–281. ISSN: 1054-7460. https://doi.org/10.1162/10547460130
0343603. https://doi.org/10.1162/105474601300343603.

Shen, Chenxinran, Joanna Mcgrenere, and Dongwook Yoon. 2024. “LegacySphere: Facilitat-
ing Intergenerational Communication Through Perspective-Taking and Storytelling in Em-
bodied VR.” In Proceedings of the 2024 CHI Conference on Human Factors in Comput-
ing Systems. CHI ’24. Honolulu, HI, USA: Association for Computing Machinery. ISBN:
9798400703300. https://doi.org/10.1145/3613904.3641923. https://doi.org/10.1145/
3613904.3641923.

Tatzgern, Markus, Raphael Grasset, Eduardo Veas, Denis Kalkofen, Hartmut Seichter, and Di-
eter Schmalstieg. 2015. “Exploring real world points of interest: Design and evaluation of
object-centric exploration techniques for augmented reality.” Pervasive and Mobile Com-
puting 18:55–70. ISSN: 1574-1192. https://doi.org/https://doi.org/10.1016/j.pmcj.2014.
08.010. https://www.sciencedirect.com/science/article/pii/S1574119214001564.

Unruh, Fabian, Jean-Luc Lugrin, and Marc Erich Latoschik. 2024. “Out-Of-Virtual-Body Ex-
periences: Virtual Disembodiment Effects on Time Perception in VR.” In Proceedings of
the 30th ACM Symposium on Virtual Reality Software and Technology. VRST ’24. Trier,
Germany: Association for Computing Machinery. ISBN: 9798400705359. https://doi.org/
10.1145/3641825.3687717. https://doi.org/10.1145/3641825.3687717.

https://doi.org/10.1145/3402942.3403019
https://doi.org/10.1145/3402942.3403019
https://doi.org/10.1145/3402942.3403019
https://doi.org/10.1145/3343055.3359709
https://doi.org/10.1145/3343055.3359709
https://doi.org/10.1145/3343055.3359709
https://doi.org/10.1145/3611659.3617219
https://doi.org/10.1145/3611659.3617219
https://doi.org/10.1145/3611659.3617219
https://doi.org/10.1162/105474601300343603
https://doi.org/10.1162/105474601300343603
https://doi.org/10.1162/105474601300343603
https://doi.org/10.1145/3613904.3641923
https://doi.org/10.1145/3613904.3641923
https://doi.org/10.1145/3613904.3641923
https://doi.org/https://doi.org/10.1016/j.pmcj.2014.08.010
https://doi.org/https://doi.org/10.1016/j.pmcj.2014.08.010
https://www.sciencedirect.com/science/article/pii/S1574119214001564
https://doi.org/10.1145/3641825.3687717
https://doi.org/10.1145/3641825.3687717
https://doi.org/10.1145/3641825.3687717

REFERENCES 57

Wu, Fei, and Evan Suma Rosenberg. 2022. “Adaptive Field-of-view Restriction: Limiting Op-
tical Flow to Mitigate Cybersickness in Virtual Reality.” In Proceedings of the 28th ACM
Symposium on Virtual Reality Software and Technology. VRST ’22. Tsukuba, Japan: As-
sociation for Computing Machinery. ISBN: 9781450398893. https : / / doi . org / 10 . 1145 /
3562939.3565611. https://doi.org/10.1145/3562939.3565611.

Zaman, Faisal, Craig Anslow, and Taehyun James Rhee. 2023. “Vicarious: Context-aware View-
points Selection for Mixed Reality Collaboration.” In Proceedings of the 29th ACM Sym-
posium on Virtual Reality Software and Technology. VRST ’23. Christchurch, New Zealand:
Association for Computing Machinery. ISBN: 9798400703287. https://doi.org/10.1145/
3611659.3615709. https://doi.org/10.1145/3611659.3615709.

Zeleznik, Robert, and Andrew Forsberg. 1999. “UniCam—2D gestural camera controls for
3D environments.” In Proceedings of the 1999 Symposium on Interactive 3D Graphics,
169–173. I3D ’99. Atlanta, Georgia, USA: Association for Computing Machinery. ISBN:
1581130821. https://doi.org/10.1145/300523.300546. https://doi.org/10.1145/300523.
300546.

Zhang, Di, Feng Xu, Chi-Man Pun, Yang Yang, Rushi Lan, Liejun Wang, Yujie Li, and Hao
Gao. 2021. “Virtual Reality Aided High-Quality 3D Reconstruction by Remote Drones.”
ACM Trans. Internet Technol. (New York, NY, USA) 22, no. 1 (September). ISSN: 1533-
5399. https://doi.org/10.1145/3458930. https://doi-org.ezproxy.fh-salzburg.ac.at/10.1145/
3458930.

https://doi.org/10.1145/3562939.3565611
https://doi.org/10.1145/3562939.3565611
https://doi.org/10.1145/3562939.3565611
https://doi.org/10.1145/3611659.3615709
https://doi.org/10.1145/3611659.3615709
https://doi.org/10.1145/3611659.3615709
https://doi.org/10.1145/300523.300546
https://doi.org/10.1145/300523.300546
https://doi.org/10.1145/300523.300546
https://doi.org/10.1145/3458930
https://doi-org.ezproxy.fh-salzburg.ac.at/10.1145/3458930
https://doi-org.ezproxy.fh-salzburg.ac.at/10.1145/3458930

REFERENCES 58

1 [Serializable]
2 public class ViewConfig<T> where T : BaseViewPair
3 {
4 public String panelTitle;
5
6 public T prefab;
7
8 [HideInInspector]
9 public T instance = null;

10 }
11
12 public abstract class BaseViewModeHandler<T> : MonoBehaviour where T :

BaseViewPair
13 {
14 public List<ViewConfig<T>> viewConfigs;
15
16 public int CurrentActiveViewCount
17 {
18 get
19 {
20 return viewConfigs.Count(x => x.instance != null);
21 }
22 }
23
24 /// <summary>
25 /// Deletes all active view pairs.
26 /// </summary>
27 /// <returns>The number of deleted view pairs.</returns>
28 public int DeleteAllActiveViews()
29 {
30 var count = 0;
31 viewConfigs.ForEach(x =>
32 {
33 if (x.instance != null)
34 {
35 x.instance.DeleteViewPair();
36 x.instance = null;
37 count++;
38 }
39 });
40 return count;
41 }
42
43 public abstract T SpawnViewPair();
44
45 public abstract void Activate();
46
47 public virtual void Deactivate()
48 {
49 DeleteAllActiveViews();
50 }
51 }

Listing 4: The BaseViewModeHandler class provides a blueprint for ViewModeHandlers,
supporting flexible additions of new View-Modes.

REFERENCES 59

1 public class DroneViewPair : BaseViewPair
2 {
3 public DroneCamController droneCamController;
4
5 public override void Awake()
6 {
7 base.Awake();
8 droneCamController.viewPair = this;
9 }

10
11 public override void ReceiveSelect()
12 {
13 droneCamController.IsSelected = !droneCamController.IsSelected;
14 }
15 }

Listing 5: The DroneViewPair class extends BaseViewPair with additional functionality,
including a DroneCamController.

1 ...
2 public float moveSpeed = 25f;
3 public float pitchSpeed = 75f;
4 public float yawSpeed = 75f;
5 public float heightSpeed = 10f;
6 ...

Listing 6: The DroneCamController defines movement speed fields for translational and
rotational motion.

REFERENCES 60

1 [Serializable]
2 public class DroneActions
3 {
4 public InputActionReference moveAction;
5 public InputActionReference yawPitchAction;
6 public InputActionReference upAction;
7 public InputActionReference downAction;
8
9 public void EnableAllActions()

10 {
11 moveAction.action.Enable();
12 yawPitchAction.action.Enable();
13 upAction.action.Enable();
14 downAction.action.Enable();
15 }
16 public void DisableAllActions()
17 {
18 moveAction.action.Disable();
19 yawPitchAction.action.Disable();
20 upAction.action.Disable();
21 downAction.action.Disable();
22 }
23 }

Listing 7: The DroneActions class manages input actions for controlling the drone’s movement
and orientation.

REFERENCES 61

1 /// <summary>
2 /// Attempts to locate the LocomotionSystem within the scene.
3 /// </summary>
4 /// <returns>True if the locomotion system was found; otherwise, false

.</returns>
5 private bool TryToFindLocomotion()
6 {
7 if (_locomotionSystem != null) return true;
8 _locomotionSystem = FindObjectOfType<LocomotionSystem>();
9 _locomotionControllerManagers = FindObjectsOfType<

ActionBasedControllerManager>().ToList();
10 return _locomotionSystem != null;
11 }
12
13 public void SetLocomotionEnabled(bool enabled)
14 {
15 if (TryToFindLocomotion())
16 {
17 _locomotionSystem.gameObject.SetActive(enabled);
18 foreach (var c in _locomotionControllerManagers)
19 {
20 c.enabled = enabled;
21 }
22 }
23 }

Listing 8: The LocomotionSystem component is located and toggled to control user movement.
The script searches for the component and sets its GameObject’s active state.

62

Appendices

A AI Methodology

During the writing of this thesis ChatGPT has been used as a tool for paraphrasing and struc-
turing of text and in the search for scientific sources. Exemplary prompts that have been used
are for example:

1 what is a good structure for a user study in a master thesis

or for getting feedback on first drafts of paragraphs which gave feedback on structure and word-
ing, the following prompt was given to ChatGPT:

1 what do you say to this introduction written in latex?
2 \section{User Study}
3 In order to answer the research question what method is more effective in a

museum setting a user study was conducted. The user study includes a
task where users have to find \ac{POI}s in a diorama. The users are
given this task with both methods in order to compare them. Data is
collected during the task to quantify this.

4 \\
5 The study is followed by a questionnaire and an interview in order to also

answer the questions on whether the multiple viewpoints lead to better
exploration or greater simulator sickness. In addition the questionnaire
and interview are used to evaluate the embodiment of the users and the

existence of a Perspective Continuum \autocite{PerspectiveContinuum
:2022} in this setting.

6 \\
7 The hypothesise hereby is that the HoverCam \autocite{HoverCam:2005} \ac{

OCE} approach leads to faster exploration due to the easier usage and
quicker change of look-at-targets via a simple ray cast. Furthermore it
is expected that multiple viewpoints lead to greater simulator sickness
since users have the additional task of managing said viewpoints whilst
also leading to better exploration since the extra viewpoints give a
greater overview of the environment. Finally, a Perspective Continuum is
expected to exist, however due to the constant switching between

viewpoints during the exploration a similar switching between embodiment
is expected as well.

As a last example, ChatGPT was used as aid in the search for scientific papers, this prompt was
given to the AI:

1 i am looking to find a scientific paper on control schemes for virtual
drones in VR. im mostly interested in whether the controls use the users
forward direction or the drones

ChatGPT responded with useful keywords to search for.

B GIT-REPOSITORY 63

B git-Repository

The source code of this thesis can be found on the following git repository:

https://gitlab.mediacube.at/fhs44512/mmt-masterarbeit-david-maerzendorfer

https://gitlab.mediacube.at/fhs44512/mmt-masterarbeit-david-maerzendorfer

B GIT-REPOSITORY 64

This work has the following word count (counted by texcount):

File: body.tex
Encoding: utf8
Sum count: 17225
Words in text: 16285
Words in headers: 133
Words outside text (captions, etc.): 807
Number of headers: 55
Number of floats/tables/figures: 30
Number of math inlines: 0
Number of math displayed: 0
Subcounts:

text+headers+captions (#headers/#floats/#inlines/#displayed)
552+1+4 (1/0/0/0) Section: Introduction
126+2+0 (1/0/0/0) Subsection: Object-Centric Exploration
349+2+0 (1/0/0/0) Subsection: Free Exploration
482+2+4 (1/0/0/0) Subsection: Museum Setting
100+2+0 (1/0/0/0) Subsection: Research Questions
42+2+0 (1/0/0/0) Section: Related Work
481+1+0 (1/0/0/0) Subsection: Viewpoints} \label{RelatedWorkViewpoints
438+2+0 (1/0/0/0) Subsection: Object-Centric Exploration
447+2+0 (1/0/0/0) Subsection: Distant Interaction
899+1+54 (1/2/0/0) Subsection: Embodiment
501+1+0 (1/0/0/0) Subsection: Drones
387+2+0 (1/0/0/0) Section: System Design
282+3+63 (1/1/0/0) Subsection: OCE Approach: HoverCam
222+3+55 (1/1/0/0) Subsection: Free Drone Approach
183+1+66 (1/1/0/0) Subsection: View-Panels
116+1+4 (1/0/0/0) Section: Implementation
224+1+0 (1/0/0/0) Subsection: View-Pair
213+1+0 (1/0/0/0) Subsection: View-Camera
300+1+0 (1/0/0/0) Subsection: View-Panel
697+7+0 (3/0/0/0) Subsection: View-Manager
635+7+0 (3/0/0/0) Subsection: Drone Implementation} \label{droneImplementation
1671+11+167 (5/6/0/0) Subsection: HoverCam Implementation} \label{hoverCamImplementation
614+1+19 (1/0/0/0) Subsection: Avatar}\label{Avatar
609+3+0 (1/0/0/0) Subsection: Point of Interest}\label{sec:POI
333+1+28 (1/1/0/0) Subsection: Control-Manager}\label{sec:controlManager
439+17+8 (6/0/0/0) Subsection: Study-Manager}\label{sec:studyManager
1346+2+111 (1/6/0/0) Section: User Study
537+1+159 (1/10/0/0) Section: Results
21+3+0 (1/0/0/0) Section: Findings and Discussion
823+4+0 (1/0/0/0) Subsection: Research Questions and Hypotheses

B GIT-REPOSITORY 65

175+4+17 (1/1/0/0) Subsection: POI Search Time Distribution
1626+37+48 (10/1/0/0) Subsection: Participant Feedback and Possible System Improvements
415+4+0 (1/0/0/0) Section: Conclusion and Future Work

	Introduction
	Object-Centric Exploration
	Free Exploration
	Museum Setting
	Research Questions

	Related Work
	Viewpoints
	Object-Centric Exploration
	Distant Interaction
	Embodiment
	Drones

	System Design
	OCE Approach: HoverCam
	Free Drone Approach
	View-Panels

	Implementation
	View-Pair
	View-Camera
	View-Panel
	View-Manager
	HUD Management
	View Spawning via BaseViewModeHandlers

	Drone Implementation
	Drone Controller
	Drone View Mode-Handler

	HoverCam Implementation
	Excursion: Orbit-Camera
	HoverCam View Mode-Handler
	HoverCam Spawner
	HoverCam Controller

	Avatar
	Point of Interest
	Control-Manager
	Study-Manager
	Tracking and Data Logging
	POI Configuration
	Diorama Control
	Information Text and Audio Cues
	Study Lifecycle Management

	User Study
	Results
	Findings and Discussion
	Research Questions and Hypotheses
	POI Search Time Distribution
	Participant Feedback and Possible System Improvements
	HUD Feedback
	Camera Feedback and Customization Needs
	View-Panel Organization and Interaction Patterns
	Outline and Highlighting Features
	Button Mapping and Interaction Issues
	Proposed Combined Camera System

	Conclusion and Future Work
	Appendices
	AI Methodology
	git-Repository

		2024-12-01T22:47:41+0100
	Signaturpruefung unter http://www.signaturpruefung.gv.at

